Analysis of the Hodge Laplacian on the Heisenberg group /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 233, no. 1095 (first of 6 numbers) |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Introduction
- Chapter 1. Differential forms and the Hodge Laplacian on _{ }
- Chapter 2. Bargmann representations and sections of homogeneous bundles
- Chapter 3. Cores, domains and self-adjoint extensions
- Chapter 4. First properties of Î?_{ }; exact and closed forms
- Chapter 5. A decomposition of ²Î?_{ }^{ } related to the â?? and â?? complexes
- 5.1. The subspaces
- 5.2. The action of Î?_{ }
- 5.3. Lifting by Î?
- Chapter 6. Intertwining operators and different scalar forms for Î?_{ }
- 6.1. The case of â?€^{, }6.2. The case of _{2,â??}^{, }
- 6.3. The case of _{1,â??}^{, }
- Chapter 7. Unitary intertwining operators and projections
- 7.1. A unitary intertwining operator for â?€^{, }
- 7.2. Unitary intertwining operators for _{1,â??}^{, Â"}
- 7.3. A unitary intertwining operator for ^{, }_{2,â??}
- Chapter 8. Decomposition of ²Î?^{ }
- 8.1. The *-Hodge operator and the case <\le2 +1
- Chapter 9. ^{ }-multipliers
- 9.1. The multiplier theorem
- 9.2. Some classes of multipliers
- Chapter 10. Decomposition of ^{ }Î?^{ } and boundedness of the Riesz transforms10.1. ^{ }- boundedness of the intertwining operators _{1,â??}^{Â"}
- 10.2. ^{ }- boundedness of the intertwining operators _{2,â??}
- Chapter 11. Applications
- 11.1. Multipliers of Î?_{ }
- 11.2. Exact ^{ }-forms
- 11.3. The Dirac operator
- Chapter 12. Appendix
- Bibliography
- Back Cover