Machine learning : a Bayesian and optimization perspective /
"This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches--which are based on optimization techniques--together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models"...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam [Netherlands] :
Academic Press,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Probability and stochastic processes
- Learning in parametric modeling: basic concepts and directions
- Mean-square error linear estimation
- Stochastic gradient descent: the LMS algorithm
- The least-squares family
- Classification: a tour of the classics
- Parameter learning: a convex analytic path
- Sparsity-aware learning: concepts and theoretical foundations
- Sparcity-aware learning: algorithms and applications
- Learning in reproducing Kernel Hilbert spaces
- Bayesian learning: inference and the EM alogrithm
- Bayesian learning: approximate inference and nonparametric models
- Monte Carlo methods
- Probabilistic graphical models: Part I
- Probabilistic graphical models: Part II
- Particle filtering
- Neural networks and deep learning
- Dimensionality reduction
- Appendix A LInear algebra
- Appendix B Probability theory and statistics
- Appendix C Hints on constrained optimization.