|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn908071759 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150415t20152015ne a ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d DEBSZ
|d OCLCF
|d OCLCQ
|d RRP
|d IDB
|d OCLCQ
|d VT2
|d MERUC
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1014396548
|a 1014432633
|a 1014475963
|a 1014486421
|
020 |
|
|
|a 9780128017227
|q (e-book)
|
020 |
|
|
|a 0128017228
|q (e-book)
|
020 |
|
|
|z 9780128015223
|
029 |
1 |
|
|a DEBBG
|b BV043619929
|
029 |
1 |
|
|a DEBSZ
|b 449490203
|
035 |
|
|
|a (OCoLC)908071759
|z (OCoLC)1014396548
|z (OCoLC)1014432633
|z (OCoLC)1014475963
|z (OCoLC)1014486421
|
050 |
|
4 |
|a Q325.5
|b .T446 2015eb
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Theodoridis, Sergios,
|d 1951-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjxcjmqG9c6pj4TqgXMGjK
|
245 |
1 |
0 |
|a Machine learning :
|b a Bayesian and optimization perspective /
|c Sergios Theodoridis.
|
264 |
|
1 |
|a Amsterdam [Netherlands] :
|b Academic Press,
|c 2015.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (1,075 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed April 15, 2015).
|
505 |
0 |
|
|a Probability and stochastic processes -- Learning in parametric modeling: basic concepts and directions -- Mean-square error linear estimation -- Stochastic gradient descent: the LMS algorithm -- The least-squares family -- Classification: a tour of the classics -- Parameter learning: a convex analytic path -- Sparsity-aware learning: concepts and theoretical foundations -- Sparcity-aware learning: algorithms and applications -- Learning in reproducing Kernel Hilbert spaces -- Bayesian learning: inference and the EM alogrithm -- Bayesian learning: approximate inference and nonparametric models -- Monte Carlo methods -- Probabilistic graphical models: Part I -- Probabilistic graphical models: Part II -- Particle filtering -- Neural networks and deep learning -- Dimensionality reduction -- Appendix A LInear algebra -- Appendix B Probability theory and statistics -- Appendix C Hints on constrained optimization.
|
520 |
|
|
|a "This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches--which are based on optimization techniques--together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models"--Publisher's website
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Bayesian statistical decision theory.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
6 |
|a Théorie de la décision bayésienne.
|
650 |
|
7 |
|a Bayesian statistical decision theory
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
758 |
|
|
|i has work:
|a Machine learning (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGYgkMR6v7xQVdMM9p3hHC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Theodoridis, Sergios.
|t Machine learning : a Bayesian and optimization perspective.
|d Amsterdam, [Netherlands] : Academic Press, ©2015
|h xxi, 1050 pages
|z 9780128015223
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=2007481
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11040166
|
938 |
|
|
|a Internet Archive
|b INAR
|n machinelearningb0000theo
|
994 |
|
|
|a 92
|b IZTAP
|