Cargando…

Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Byeon, Jaeyoung, 1966- (Autor), Tanaka, Kazunaga, 1959- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2013.
Colección:Memoirs of the American Mathematical Society ; Volume 229, no. 1076.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn908065868
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 150417t20132013riu ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d EBLCP  |d DEBSZ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 922981889  |a 1259245573 
020 |a 9781470415303  |q (e-book) 
020 |a 1470415305  |q (e-book) 
020 |z 9780821891636 
029 1 |a AU@  |b 000069392284 
029 1 |a DEBBG  |b BV043623559 
029 1 |a DEBSZ  |b 45255263X 
035 |a (OCoLC)908065868  |z (OCoLC)922981889  |z (OCoLC)1259245573 
050 4 |a QC174.26.W28  |b .B946 2013eb 
082 0 4 |a 530.12/4  |2 23 
049 |a UAMI 
100 1 |a Byeon, Jaeyoung,  |d 1966-  |e author. 
245 1 0 |a Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations /  |c Jaeyoung Byeon, Kazunaga Tanaka. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2013. 
264 4 |c ©2013 
300 |a 1 online resource (104 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v Volume 229, Number 1076 
500 |a "Volume 229, Number 1076 (third of 5 numbers)." 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a ""Contents""; ""Chapter 1. Introduction and results""; ""Chapter 2. Preliminaries""; ""2.1. Notation""; ""2.2. Limit problems""; ""2.3. Estimate of _{ â?€}() with relation to the Pohozaev identity""; ""2.4. Functional setting""; ""2.5. Choice of a neighborhood of â?³""; ""2.6. Control on small parts of â?? ¹(^{ })""; ""Chapter 3. Local centers of mass""; ""3.1. Local centers of mass""; ""3.2. Some functions Î?(), Ξ(), Î?_{ }() in terms of local centers of mass""; ""Chapter 4. Neighborhood Ω_{ }(,) and minimization for a tail of in Ω_{ }"" 
505 8 |a ""4.1. A choice of parameters and minimization""""4.2. Invariant new neighborhoods""; ""4.3. Width of a set Ì? (â€?, â€?)â??Ì? (â€?, â€?)""; ""Chapter 5. A gradient estimate for the energy functional""; ""5.1.-dependent concentration-compactness argument""; ""5.2. A gradient estimate""; ""5.3. Gradient flow of the energy functional Î?_{ }""; ""Chapter 6. Translation flow associated to a gradient flow of () on \R^{ }""; ""6.1. A pseudo-gradient flow on \overline{ }_{3 â?€}()^{â??â?€} associated to (â??)+\cdots+ (_{â??â?€})"" 
505 8 |a ""6.2. Definition of a translation operator""""6.3. Properties of the translation operator""; ""Chapter 7. Iteration procedure for the gradient flow and the translation flow""; ""Chapter 8. An (+1)â??â?€-dimensional initial path and an intersection result""; ""8.1. A preliminary path â?€""; ""8.2. An initial path _{1 }""; ""8.3. An intersection property""; ""Chapter 9. Completion of the proof of Theorem 1.3""; ""Chapter 10. Proof of Proposition 8.3""; ""10.1. An interaction estimate""; ""10.2. Preliminary asymptotic estimates""; ""10.3. Proof of Proposition 10.1"" 
505 8 |a Chapter 11. Proof of Lemma 6.1Chapter 12. Generalization to a saddle point setting -- 12.1. Saddle point setting -- 12.2. Proof of Theorem 12.1 -- Acknowledgments -- Bibliography 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Gross-Pitaevskii equations. 
650 0 |a Schrödinger equation. 
650 0 |a Standing waves. 
650 0 |a Cluster analysis. 
650 6 |a Équations de Gross-Pitaevskii. 
650 6 |a Équation de Schrödinger. 
650 6 |a Ondes stationnaires. 
650 6 |a Classification automatique (Statistique) 
650 7 |a Cluster analysis  |2 fast 
650 7 |a Gross-Pitaevskii equations  |2 fast 
650 7 |a Schrödinger equation  |2 fast 
650 7 |a Standing waves  |2 fast 
700 1 |a Tanaka, Kazunaga,  |d 1959-  |e author. 
758 |i has work:  |a Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG8VH8FGmcDDtX6BVW3BWC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Byeon, Jaeyoung, 1966-  |t Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations.  |d Providence, Rhode Island : American Mathematical Society, ©2013  |h 89 pages  |k Memoirs of the American Mathematical Society ; Volume 229, Number 1076  |x 1947-6221  |z 9780821891636 
830 0 |a Memoirs of the American Mathematical Society ;  |v Volume 229, no. 1076. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114200  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35006558 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114200 
938 |a ebrary  |b EBRY  |n ebr11039819 
994 |a 92  |b IZTAP