Minimal resolutions via algebraic discrete morse theory /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2009.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 197, no. 923. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Algebraic Discrete Morse Theory""; ""Chapter 3. Resolution of the Residue Field in the Commutative Case""; ""1. Gröbner Bases and Discrete Morse Theory""; ""2. An Anick Resolution for the Commutative Polynomial Ring""; ""3. Two Special Cases""; ""Chapter 4. Resolution of the Residue Field in the Non-Commutative Case""; ""1. Non-commutative Gröbner Bases and Discrete Morse Theory""; ""2. The Anick Resolution""; ""3. The Poincaré-Betti Series of k""; ""4. Examples""; ""Chapter 5. Application to the Acyclic Hochschild Complex""
- 1. Hochschild Homology and Discrete Morse Theory2. Explicit Calculations of Hochschild Homology
- Chapter 6. Minimal (Cellular) Resolutions for (p- )Borel Fixed Ideals
- 1. Cellular Resolutions
- 2. Cellular Minimal Resolution for Principal Borel Fixed Ideals
- 3. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals
- Appendix A. The Bar and the Hochschild Complex
- Appendix B. Proofs for Algebraic Discrete Morse Theory
- Bibliography
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- K
- L
- M
- N
- P
- R
- St
- v
- w