Cargando…

Minimal resolutions via algebraic discrete morse theory /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: J©œllenbeck, Michael, 1975- (Autor), Welker, Volkmar (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2009.
Colección:Memoirs of the American Mathematical Society ; Volume 197, no. 923.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Algebraic Discrete Morse Theory""; ""Chapter 3. Resolution of the Residue Field in the Commutative Case""; ""1. Gröbner Bases and Discrete Morse Theory""; ""2. An Anick Resolution for the Commutative Polynomial Ring""; ""3. Two Special Cases""; ""Chapter 4. Resolution of the Residue Field in the Non-Commutative Case""; ""1. Non-commutative Gröbner Bases and Discrete Morse Theory""; ""2. The Anick Resolution""; ""3. The Poincaré-Betti Series of k""; ""4. Examples""; ""Chapter 5. Application to the Acyclic Hochschild Complex""
  • 1. Hochschild Homology and Discrete Morse Theory2. Explicit Calculations of Hochschild Homology
  • Chapter 6. Minimal (Cellular) Resolutions for (p- )Borel Fixed Ideals
  • 1. Cellular Resolutions
  • 2. Cellular Minimal Resolution for Principal Borel Fixed Ideals
  • 3. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals
  • Appendix A. The Bar and the Hochschild Complex
  • Appendix B. Proofs for Algebraic Discrete Morse Theory
  • Bibliography
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • P
  • R
  • St
  • v
  • w