Topological classification of families of diffeomorphisms without small divisors /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Psychological Association,
2010.
|
Colección: | Memoirs of the American Mathematical Society.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Chapter 1. Outline of the Monograph
- Chapter 2. Flower Type Vector Fields
- 2.1. Definition and basic properties
- 2.2. Families of vector fields without small divisors
- Chapter 3. A Clockwork Orange
- 3.1. Exterior dynamics
- 3.2. The magnifying glass
- Chapter 4. The T-sets
- 4.1. Unstable set and bi-tangent cords
- 4.2. Dynamical instability
- 4.3. Disassembling the graph
- Chapter 5. The Long Limits
- 5.1. Setup and non-oscillation properties
- 5.2. Definition of the Long Limits
- 5.3. Structure of the Long Limits
- 5.4. Evolution of the Long LimitsChapter 6. Topological Conjugation of (NSD) Vector Fields
- 6.1. Orientation
- 6.2. Comparing residues
- 6.3. Topological invariants
- Chapter 7. Families of Diffeomorphisms without Small Divisors
- 7.1. Normal form and residues
- 7.2. Comparing a diffeomorphism and its normal form
- 7.3. Long orbits
- Chapter 8. Topological Invariants of (NSD) Diffeomorphisms
- 8.1. Topological invariants
- 8.2. Theorem of topological conjugation
- Chapter 9. Tangential Conjugations
- 9.1. Plan of the chapter
- 9.2. Preparation of 1 and 29.3. Shaping the domains
- 9.4. Base transversals
- 9.5. The M-interpolation process
- 9.6. Regions and their limiting curves
- 9.7. Conjugating a diffeomorphism and its normal form
- 9.8. Comparing tg-conjugations
- List of Notations
- Bibliography
- Index