Cargando…

Biomedical textiles for orthopaedic and surgical applications : fundamentals, applications and tissue engineering /

Recent concerns over the possible effects of metal-on-metal orthopaedic implants and the evolution of more natural structures made from fibre have made medical device manufacturers consider the potential of fibre. Textiles offer the potential to replace traditional materials with novel fibres which...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Blair, Todd (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Woodhead Publishing, 2015.
Colección:Woodhead Publishing series in biomaterials ; no. 93.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Biomedical Textiles for Orthopaedic and Surgical Applications: Fundamentals, Applications and Tissue Engineering; Copyright; Contents; List of contributors; Woodhead Publishing Series in Biomaterials; Chapter 1: Biomechanical testing and the development of silk-based textiles for regenerative medicine and surgery; 1.1. Introduction; 1.2. Current landscape; 1.3. A new paradigm: Compliance Matching and Material Property Led Engineering Technologies; 1.3.1. Phase 1: Understanding natural tissue; 1.3.2. Phase 2: Comparison with current solutions.
  • 1.3.3. Phase 3: Novel compliance-matched solutions1.3.4. Importance of sample quantity and quality; 1.3.5. Mechanical testing; 1.3.6. Thermal testing; 1.3.7. Optical testing; 1.4. CoMMPLETe case study: Rotator cuff tendons; 1.4.1. CoMMPLETe phase 1: Understanding rotator cuff properties; 1.4.2. CoMMPLETe phase 2: Comparison with existing patches; 1.5. Future trends and applications; 1.5.1. CoMMPLETe phase 3: Developing silk-based solutions; 1.6. Conclusions; 1.7. Sources of further information and advice; Websites; Acknowledgements; References.
  • Chapter 2: Embroidery technology for hard-tissue scaffolds2.1. Introduction; 2.1.1. Incidence and medical relevance of critical size defects; 2.1.2. Applied therapies and their limitations; 2.1.3. Regeneration of critical size defects by tissue engineering; 2.1.4. Scaffolds for bone tissue engineering; 2.2. Manufacturing of porous textile structures using embroidery technology; 2.2.1. Principal aspects of embroidery technology; 2.2.2. Thread materials for scaffold fabrication using embroidery technology; 2.2.2.1. Surgical thread materials; 2.2.2.2. Noncommercial fibres.
  • 2.2.3. Embroidered scaffolds2.3. Application of embroidered scaffolds for hard-tissue engineering; 2.3.1. Tissue engineering strategies for hard-tissue implants based on embroidered scaffolds; 2.3.2. Coatings for improved osteoconductivity and osteoinductivity; 2.3.3. Cell selection and seeding procedures; 2.3.4. Tissue engineering of hard tissue; 2.4. Conclusion; 2.5. Future trends; References; Chapter 3: Nonwoven scaffolds for bone regeneration; 3.1. The structure of bone and the mechanisms for self-repair; 3.2. Fibre manufacture from biomaterials; 3.2.1. Collagen.