Micro energy harvesting /
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale wit...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Weinheim :
Wiley-VCH Verlag GmbH & Co. KGaA,
[2015]
|
Colección: | Advanced micro & nanosystems.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright; Contents; About the Volume Editors; List of Contributors; Chapter 1 Introduction to Micro Energy Harvesting; 1.1 Introduction to the Topic; 1.2 Current Status and Trends; 1.3 Book Content and Structure; Chapter 2 Fundamentals of Mechanics and Dynamics; 2.1 Introduction; 2.2 Strategies for Micro Vibration Energy Harvesting; 2.2.1 Piezoelectric; 2.2.2 Electromagnetic; 2.2.3 Electrostatic; 2.2.4 From Macro to Micro to Nano; 2.3 Dynamical Models for Vibration Energy Harvesters; 2.3.1 Stochastic Character of Ambient Vibrations.
- 2.3.2 Linear Case 1: Piezoelectric Cantilever Generator2.3.3 Linear Case 2: Electromagnetic Generator; 2.3.4 Transfer Function; 2.4 Beyond Linear Micro-Vibration Harvesting; 2.4.1 Frequency Tuning; 2.4.2 Multimodal Harvesting; 2.4.3 Up-Conversion Techniques; 2.5 Nonlinear Micro-Vibration Energy Harvesting; 2.5.1 Bistable Oscillators: Cantilever; 2.5.2 Bistable Oscillators: Buckled Beam; 2.5.3 Monostable Oscillators; 2.6 Conclusions; Acknowledgments; References; Chapter 3 Electromechanical Transducers; 3.1 Introduction; 3.2 Electromagnetic Transducers; 3.2.1 Basic Principle.
- 3.2.1.1 Induced Voltage3.2.1.2 Self-Induction; 3.2.1.3 Mechanical Aspect; 3.2.2 Typical Architectures; 3.2.2.1 Case Study; 3.2.2.2 General Case; 3.2.3 Energy Extraction Cycle; 3.2.3.1 Resistive Cycle; 3.2.3.2 Self-Inductance Cancelation; 3.2.3.3 Cycle with Rectification; 3.2.3.4 Active Cycle; 3.2.4 Figures of Merit and Limitations; 3.3 Piezoelectric Transducers; 3.3.1 Basic Principles and Constitutive Equations; 3.3.1.1 Physical Origin of Piezoelectricity in Ceramics and Crystals; 3.3.1.2 Constitutive Equations; 3.3.2 Typical Architectures for Energy Harvesting; 3.3.2.1 Modeling.
- 3.3.2.2 Application to Typical Configurations3.3.3 Energy Extraction Cycles; 3.3.3.1 Resistive Cycles; 3.3.3.2 Cycles with Rectification; 3.3.3.3 Active Cycles; 3.3.3.4 Comparison; 3.3.4 Maximal Power Density and Figure of Merit; 3.4 Electrostatic Transducers; 3.4.1 Basic Principles; 3.4.1.1 Gauss's Law; 3.4.1.2 Capacitance C0; 3.4.1.3 Electric Potential; 3.4.1.4 Energy; 3.4.1.5 Force; 3.4.2 Design Parameters for a Capacitor; 3.4.2.1 Architecture; 3.4.2.2 Dielectric; 3.4.3 Energy Extraction Cycles; 3.4.3.1 Charge-Constrained Cycle; 3.4.3.2 Voltage-Constrained Cycle; 3.4.3.3 Electret Cycle.
- 3.4.4 Limits3.4.4.1 Parasitic Capacitors; 3.4.4.2 Breakdown Voltage; 3.4.4.3 Pull-In Force; 3.5 Other Electromechanical Transduction Principles; 3.5.1 Electrostrictive Materials; 3.5.1.1 Physical Origin and Constitutive Equations; 3.5.1.2 Energy Harvesting Strategies; 3.5.2 Magnetostrictive Materials; 3.5.2.1 Physical Origin; 3.5.2.2 Constitutive Equations; 3.6 Effect of the Vibration Energy Harvester Mechanical Structure; 3.7 Summary; References; Chapter 4 Thermal Fundamentals; 4.1 Introduction; 4.2 Fundamentals of Thermoelectric Power Generation.