Cargando…

Bayesian data analysis in ecology using linear models with R, BUGS, and Stan /

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their da...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Korner-Nievergelt, Fränzi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Academic Press, an imprint of Elsevier, [2015]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn906699032
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 150407s2015 ne a ob 001 0 eng d
010 |a  2014957273 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d OPELS  |d E7B  |d YDXCP  |d COO  |d CDX  |d CHVBK  |d EBLCP  |d DEBSZ  |d FEM  |d OCLCO  |d IDB  |d Z5A  |d OCLCQ  |d MERUC  |d OCLCQ  |d WRM  |d U3W  |d D6H  |d OCLCF  |d RRP  |d OCLCQ  |d WYU  |d OCLCA  |d MERER  |d OCLCQ  |d OCLCA  |d WURST  |d VT2  |d OCLCA  |d SFB  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 908100768  |a 926105501  |a 968096815  |a 1066538951  |a 1129364060  |a 1175810697  |a 1228569764 
020 |a 9780128016787  |q (electronic bk.) 
020 |a 0128016787  |q (electronic bk.) 
020 |a 0128013702 
020 |a 9780128013700 
020 |z 9780128013700 
029 1 |a AU@  |b 000059708700 
029 1 |a AU@  |b 000060745758 
029 1 |a CHBIS  |b 010547792 
029 1 |a CHDSB  |b 006407176 
029 1 |a CHNEW  |b 001012832 
029 1 |a CHVBK  |b 34178124X 
029 1 |a DEBBG  |b BV043619938 
029 1 |a DEBSZ  |b 449490386 
029 1 |a DEBSZ  |b 451525396 
029 1 |a DEBSZ  |b 482466693 
029 1 |a GBVCP  |b 823581543 
029 1 |a NLGGC  |b 39253603X 
029 1 |a NZ1  |b 15969494 
029 1 |a AU@  |b 000054965664 
035 |a (OCoLC)906699032  |z (OCoLC)908100768  |z (OCoLC)926105501  |z (OCoLC)968096815  |z (OCoLC)1066538951  |z (OCoLC)1129364060  |z (OCoLC)1175810697  |z (OCoLC)1228569764 
037 |a 9027699791612325547  |b TotalBoox  |f Ebook only  |n www.totalboox.com 
050 4 |a QH541.15.S72 
070 0 |a QH541.15.S72  |b K67 2015 
072 7 |a NAT  |x 010000  |2 bisacsh 
072 7 |a NAT  |x 045040  |2 bisacsh 
072 7 |a SCI  |x 026000  |2 bisacsh 
072 7 |a SCI  |x 020000  |2 bisacsh 
082 0 4 |a 577.01/5195  |2 23 
049 |a UAMI 
100 1 |a Korner-Nievergelt, Fränzi,  |e author. 
245 1 0 |a Bayesian data analysis in ecology using linear models with R, BUGS, and Stan /  |c Fränzi Korner-Nievergelt [and five others]. 
264 1 |a Amsterdam ;  |a Boston :  |b Academic Press, an imprint of Elsevier,  |c [2015] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed April 9, 2015). 
504 |a Includes bibliographical references and index. 
520 |a Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions-including all R codes-that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. 
505 0 |a Front Cover; Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan; Copyright; Contents; Digital Assets; Acknowledgments; Chapter 1 -- Why do we Need Statistical Models and What is this Book About?; 1.1 WHY WE NEED STATISTICAL MODELS; 1.2 WHAT THIS BOOK IS ABOUT; FURTHER READING; Chapter 2 -- Prerequisites and Vocabulary; 2.1 SOFTWARE; 2.2 IMPORTANT STATISTICAL TERMS AND HOW TO HANDLE THEM IN R; FURTHER READING; Chapter 3 -- The Bayesian and the Frequentist Ways of Analyzing Data; 3.1 SHORT HISTORICAL OVERVIEW; 3.2 THE BAYESIAN WAY; 3.3 THE FREQUENTIST WAY. 
505 8 |a 3.4 COMPARISON OF THE BAYESIAN AND THE FREQUENTIST WAYSFURTHER READING; Chapter 4 -- Normal Linear Models; 4.1 LINEAR REGRESSION; 4.2 REGRESSION VARIANTS: ANOVA, ANCOVA, AND MULTIPLE REGRESSION; FURTHER READING; Chapter 5 -- Likelihood; 5.1 THEORY; 5.2 THE MAXIMUM LIKELIHOOD METHOD; 5.3 THE LOG POINTWISE PREDICTIVE DENSITY; FURTHER READING; Chapter 6 -- Assessing Model Assumptions: Residual Analysis; 6.1 MODEL ASSUMPTIONS; 6.2 INDEPENDENT AND IDENTICALLY DISTRIBUTED; 6.3 THE QQ PLOT; 6.4 TEMPORAL AUTOCORRELATION; 6.5 SPATIAL AUTOCORRELATION; 6.6 HETEROSCEDASTICITY; FURTHER READING. 
505 8 |a Chapter 7 -- Linear Mixed Effects Models7.1 BACKGROUND; 7.2 FITTING A LINEAR MIXED MODEL IN R; 7.3 RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION; 7.4 ASSESSING MODEL ASSUMPTIONS; 7.5 DRAWING CONCLUSIONS; 7.6 FREQUENTIST RESULTS; 7.7 RANDOM INTERCEPT AND RANDOM SLOPE; 7.8 NESTED AND CROSSED RANDOM EFFECTS; 7.9 MODEL SELECTION IN MIXED MODELS; FURTHER READING; Chapter 8 -- Generalized Linear Models; 8.1 BACKGROUND; 8.2 BINOMIAL MODEL; 8.3 FITTING A BINARY LOGISTIC REGRESSION IN R; 8.4 POISSON MODEL; FURTHER READING; Chapter 9 -- Generalized Linear Mixed Models; 9.1 BINOMIAL MIXED MODEL. 
505 8 |a 9.2 POISSON MIXED MODELFURTHER READING; Chapter 10 -- Posterior Predictive Model Checking and Proportion of Explained Variance; 10.1 POSTERIOR PREDICTIVE MODEL CHECKING; 10.2 MEASURES OF EXPLAINED VARIANCE; FURTHER READING; Chapter 11 -- Model Selection and Multimodel Inference; 11.1 WHEN AND WHY WE SELECT MODELS AND WHY THIS IS DIFFICULT; 11.2 METHODS FOR MODEL SELECTION AND MODEL COMPARISONS; 11.3 MULTIMODEL INFERENCE; 11.4 WHICH METHOD TO CHOOSE AND WHICH STRATEGY TO FOLLOW; FURTHER READING; Chapter 12 -- Markov Chain Monte Carlo Simulation; 12.1 BACKGROUND; 12.2 MCMC USING BUGS. 
505 8 |a 12.3 MCMC USING STAN12.4 SIM, BUGS, AND STAN; FURTHER READING; Chapter 13 -- Modeling Spatial Data Using GLMM; 13.1 BACKGROUND; 13.2 MODELING ASSUMPTIONS; 13.3 EXPLICIT MODELING OF SPATIAL AUTOCORRELATION; FURTHER READING; Chapter 14 -- Advanced Ecological Models; 14.1 HIERARCHICAL MULTINOMIAL MODEL TO ANALYZE HABITAT SELECTION USING BUGS; 14.2 ZERO-INFLATED POISSON MIXED MODEL FOR ANALYZING BREEDING SUCCESS USING STAN; 14.3 OCCUPANCY MODEL TO MEASURE SPECIES DISTRIBUTION USING STAN; 14.4 TERRITORY OCCUPANCY MODEL TO ESTIMATE SURVIVAL USING BUGS. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a BUGS (Information storage and retrieval system) 
630 0 7 |a BUGS (Information storage and retrieval system)  |2 fast 
650 0 |a Ecology  |x Research  |x Statistical methods. 
650 0 |a Bayesian statistical decision theory. 
650 0 |a R (Computer program language) 
650 0 |a Linear models (Statistics) 
650 2 |a Bayes Theorem 
650 2 |a Linear Models 
650 6 |a Écologie  |x Recherche  |x Méthodes statistiques. 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a R (Langage de programmation) 
650 6 |a Théorème de Bayes. 
650 6 |a Modèles linéaires (Statistique) 
650 7 |a NATURE  |x Ecology.  |2 bisacsh 
650 7 |a NATURE  |x Ecosystems & Habitats  |x Wilderness.  |2 bisacsh 
650 7 |a SCIENCE  |x Environmental Science.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Ecology.  |2 bisacsh 
650 7 |a Linear models (Statistics)  |2 fast 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Ökologie  |2 gnd 
650 7 |a Datenverarbeitung  |2 gnd 
650 7 |a Bayes-Verfahren  |2 gnd 
650 7 |a Biostatistik  |2 gnd 
650 7 |a R  |g Programm  |2 gnd 
650 7 |a Gibbs-sampling  |2 gnd 
653 0 0 |a ecologie 
653 0 0 |a ecology 
653 0 0 |a gegevensanalyse 
653 0 0 |a data analysis 
653 0 0 |a bayesiaanse theorie 
653 0 0 |a bayesian theory 
653 0 0 |a modellen 
653 0 0 |a models 
653 0 0 |a computer software 
653 1 0 |a Statistical Analysis 
653 2 0 |a Ecology (General) 
653 1 0 |a Statistische analyse 
653 2 0 |a Ecologie (algemeen) 
758 |i has work:  |a Bayesian data analysis in ecology using linear models with R, BUGS, and Stan (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmBv8Rd3VxxMRtqhtwm7d  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Bayesian data analysis in ecology using linear models with R, BUGS, and Stan.  |d Amsterdam, [Netherlands] : Academic Press, ©2015  |h xii, 316 pages  |z 9780128013700 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=2008285  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 31388810 
938 |a EBL - Ebook Library  |b EBLB  |n EBL2008285 
938 |a ebrary  |b EBRY  |n ebr11043517 
938 |a EBSCOhost  |b EBSC  |n 975576 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31388810 
938 |a YBP Library Services  |b YANK  |n 12375661 
994 |a 92  |b IZTAP