Cargando…

Multivariate Density Estimation : Theory, Practice, and Visualization.

David W. Scott, PhD, is Noah Harding Professor in the Department of Statistics at Rice University. The author of over 100 published articles, papers, and book chapters, Dr. Scott is also Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics. He is recipien...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scott, David W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2015.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn905988747
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 150321s2015 xx ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d E7B  |d OCLCQ  |d YDXCP  |d OCLCO  |d DEBSZ  |d COO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d K6U  |d IDB  |d COCUF  |d CCO  |d PIFFA  |d FVL  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d BUF  |d STF  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 961695664  |a 962722756  |a 1055392806  |a 1066428333  |a 1081224827  |a 1148080917 
020 |a 9781118575482 
020 |a 1118575482 
020 |a 9780471697558 
020 |a 0471697559 
029 1 |a CHNEW  |b 000889745 
029 1 |a DEBBG  |b BV044072321 
029 1 |a DEBSZ  |b 431873135 
029 1 |a DEBSZ  |b 449476685 
035 |a (OCoLC)905988747  |z (OCoLC)961695664  |z (OCoLC)962722756  |z (OCoLC)1055392806  |z (OCoLC)1066428333  |z (OCoLC)1081224827  |z (OCoLC)1148080917 
050 4 |a QA276.8 .S28 2014 
082 0 4 |a 519.5  |a 519.535 
049 |a UAMI 
100 1 |a Scott, David W. 
245 1 0 |a Multivariate Density Estimation :  |b Theory, Practice, and Visualization. 
250 |a 2nd ed. 
260 |a Hoboken :  |b Wiley,  |c 2015. 
300 |a 1 online resource (381 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Title Page; Copyright Page; Contents; Preface to Second Edition; Preface to First Edition; Chapter 1 Representation and Geometry of Multivariate Data; 1.1 Introduction; 1.2 Historical Perspective; 1.3 Graphical Display of Multivariate Data Points; 1.3.1 Multivariate Scatter Diagrams; 1.3.2 Chernoff Faces; 1.3.3 Andrews' Curves and Parallel Coordinate Curves; 1.3.4 Limitations; 1.4 Graphical Display of Multivariate Functionals; 1.4.1 Scatterplot Smoothing by Density Function; 1.4.2 Scatterplot Smoothing by Regression Function; 1.4.3 Visualization of Multivariate Functions. 
505 8 |a 1.4.3.1 Visualizing Multivariate Regression Functions1.4.4 Overview of Contouring and Surface Display; 1.5 Geometry of Higher Dimensions; 1.5.1 Polar Coordinates in d Dimensions; 1.5.2 Content of Hypersphere; 1.5.3 Some Interesting Consequences; 1.5.3.1 Sphere Inscribed in Hypercube; 1.5.3.2 Hypervolume of a Thin Shell; 1.5.3.3 Tail Probabilities of Multivariate Normal; 1.5.3.4 Diagonals in Hyperspace; 1.5.3.5 Data Aggregate Around Shell; 1.5.3.6 Nearest Neighbor Distances; Problems; Chapter 2 Nonparametric Estimation Criteria; 2.1 Estimation of the Cumulative Distribution Function. 
505 8 |a 2.2 Direct Nonparametric Estimation of the Density2.3 Error Criteria for Density Estimates; 2.3.1 MISE for Parametric Estimators; 2.3.1.1 Uniform Density Example; 2.3.1.2 General Parametric MISE Method with Gaussian Application; 2.3.2 The L1 Criterion; 2.3.2.1 L1 versus L2; 2.3.2.2 Three Useful Properties of the L1 Criterion; 2.3.3 Data-Based Parametric Estimation Criteria; 2.4 Nonparametric Families of Distributions; 2.4.1 Pearson Family of Distributions; 2.4.2 When Is an Estimator Nonparametric?; Problems; Chapter 3 Histograms: Theory and Practice. 
505 8 |a 3.1 Sturges' Rule for Histogram Bin-Width Selection3.2 The L2 Theory of Univariate Histograms; 3.2.1 Pointwise Mean Squared Error and Consistency; 3.2.2 Global L2 Histogram Error; 3.2.3 Normal Density Reference Rule; 3.2.3.1 Comparison of Bandwidth Rules; 3.2.3.2 Adjustments for Skewness and Kurtosis; 3.2.4 Equivalent Sample Sizes; 3.2.5 Sensitivity of MISE to Bin Width; 3.2.5.1 Asymptotic Case; 3.2.5.2 Large-Sample and Small-Sample Simulations; 3.2.6 Exact MISE versus Asymptotic MISE; 3.2.6.1 Normal Density; 3.2.6.2 Lognormal Density; 3.2.7 Influence of Bin Edge Location on MISE. 
505 8 |a 3.2.7.1 General Case3.2.7.2 Boundary Discontinuities in the Density; 3.2.8 Optimally Adaptive Histogram Meshes; 3.2.8.1 Bounds on MISE Improvement for Adaptive Histograms; 3.2.8.2 Some Optimal Meshes; 3.2.8.3 Null Space of Adaptive Densities; 3.2.8.4 Percentile Meshes or Adaptive Histograms with Equal Bin Counts; 3.2.8.5 Using Adaptive Meshes versus Transformation; 3.2.8.6 Remarks; 3.3 Practical Data-Based Bin Width Rules; 3.3.1 Oversmoothed Bin Widths; 3.3.1.1 Lower Bounds on the Number of Bins; 3.3.1.2 Upper Bounds on Bin Widths; 3.3.2 Biased and Unbiased CV; 3.3.2.1 Biased CV. 
500 |a 3.3.2.2 Unbiased CV. 
520 |a David W. Scott, PhD, is Noah Harding Professor in the Department of Statistics at Rice University. The author of over 100 published articles, papers, and book chapters, Dr. Scott is also Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics. He is recipient of the ASA Founder's Award and the Army Wilks Award. His research interests include computational statistics, data visualization, and density estimation. Dr. Scott is also Coeditor of Wiley Interdisciplinary Reviews: Computational Statistics and previous Editor of the Journal of Computational and. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Estimation theory. 
650 0 |a Multivariate analysis. 
650 6 |a Théorie de l'estimation. 
650 6 |a Analyse multivariée. 
650 7 |a Estimation theory  |2 fast 
650 7 |a Multivariate analysis  |2 fast 
758 |i has work:  |a Multivariate density estimation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFtCxDH4hJCQmjRv6PrJfy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Scott, David W.  |t Multivariate Density Estimation : Theory, Practice, and Visualization.  |d Hoboken : Wiley, ©2015  |z 9780471697558 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895499  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27098397 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27098584 
938 |a ebrary  |b EBRY  |n ebr11033611 
938 |a YBP Library Services  |b YANK  |n 12343539 
938 |a YBP Library Services  |b YANK  |n 11072092 
938 |a YBP Library Services  |b YANK  |n 12672879 
994 |a 92  |b IZTAP