Cargando…

Radio-frequency integrated-circuit engineering /

"Complementary metal-oxide-semiconductor (CMOS) is a technology for constructing integrated circuits. This book thoroughly discusses the theory, analysis, design, and high-frequency/high-speed characteristics and applications of printed-circuit transmission lines used in integrated circuits and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nguyen, Cam (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • Chapter 1 Introduction
  • Problems
  • Chapter 2 Fundamentals of Electromagnetics
  • 2.1 EM Field Parameters
  • 2.2 Maxwell's Equations
  • 2.3 Auxiliary Relations
  • 2.3.1 Constitutive Relations
  • 2.3.2 Current Relations
  • 2.4 Sinusoidal Time-Varying Steady State
  • 2.5 Boundary Conditions
  • 2.5.1 General Boundary Conditions
  • 2.5.2 Specific Boundary Conditions
  • 2.6 Wave Equations
  • 2.7 Power
  • 2.8 Loss and Propagation Constant in Medium
  • 2.9 Skin Depth
  • 2.10 Surface Impedance
  • Problems
  • Chapter 3 Lumped Elements
  • 3.1 Fundamentals of Lumped Elements
  • 3.1.1 Basic Equations
  • 3.2 Quality Factor of Lumped Elements
  • 3.3 Modeling of Lumped Elements
  • 3.4 Inductors
  • 3.4.1 Inductor Configurations
  • 3.4.2 Loss in Inductors
  • 3.4.3 Equivalent-Circuit Models of Inductors
  • 3.4.4 Resonance in Inductors
  • 3.4.5 Quality Factor of Inductors
  • 3.4.6 High Q Inductor Design Considerations
  • 3.5 Lumped-Element Capacitors
  • 3.5.1 Capacitor Configurations
  • 3.5.2 Equivalent-Circuit Models of Capacitors
  • 3.5.3 Resonance
  • 3.5.4 Quality Factor
  • 3.5.5 High Q Capacitor Design Considerations
  • 3.6 Lumped-Element Resistors
  • 3.6.1 Resistor Configurations
  • 3.6.2 Basic Resistor Equations
  • 3.6.3 Equivalent-Circuit Models of Resistors
  • References
  • Problems
  • Chapter 4 Transmission Lines
  • 4.1 Essentials of Transmission Lines
  • 4.2 Transmission-Line Equations
  • 4.2.1 General Transmission-Line Equations
  • 4.2.2 Sinusoidal Steady-State Transmission-Line Equations
  • 4.3 Transmission-Line Parameters
  • 4.3.1 General Transmission Lines
  • 4.3.2 Lossless Transmission Lines
  • 4.3.3 Low Loss Transmission Lines
  • 4.4 Per-Unit-Length Parameters R, L, C, and G
  • 4.4.1 General Formulation
  • 4.4.2 Formulation for Simple Transmission Lines.
  • 4.5 Dielectric and Conductor Losses in Transmission Lines
  • 4.5.1 Dielectric Attenuation Constant
  • 4.5.2 Conductor Attenuation Constant
  • 4.6 Dispersion and Distortion in Transmission Lines
  • 4.6.1 Dispersion
  • 4.6.2 Distortion
  • 4.6.3 Distortion-Less Transmission Lines
  • 4.7 Group Velocity
  • 4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios
  • 4.8.1 Impedance
  • 4.8.2 Reflection Coefficients
  • 4.8.3 Standing-Wave Ratio
  • 4.8.4 Perfect Match and Total Reflection
  • 4.8.5 Lossless Transmission Lines
  • 4.9 Synthetic Transmission Lines
  • 4.10 Tem and Quasi-Tem Transmission-Line Parameters
  • 4.10.1 Static or Quasi-Static Analysis
  • 4.10.2 Dynamic Analysis
  • 4.11 Printed-Circuit Transmission Lines
  • 4.11.1 Microstrip Line
  • 4.11.2 Coplanar Waveguide
  • 4.11.3 Coplanar Strips
  • 4.11.4 Strip Line
  • 4.11.5 Slot Line
  • 4.11.6 Field Distributions
  • 4.12 Transmission Lines in RFICs
  • 4.12.1 Microstrip Line
  • 4.12.2 Coplanar Waveguide
  • 4.12.3 Coplanar Strips
  • 4.12.4 Strip Line
  • 4.12.5 Slot Line
  • 4.12.6 Transitions and Junctions Between Transmission Lines
  • 4.13 Multi-Conductor Transmission Lines
  • 4.13.1 Transmission-Line Equations
  • 4.13.2 Propagation Modes
  • 4.13.3 Characteristic Impedance and Admittance Matrix
  • 4.13.4 Mode Characteristic Impedances and Admittances
  • 4.13.5 Impedance and Admittance Matrix
  • 4.13.6 Lossless Multiconductor Transmission Lines
  • References
  • Problems
  • Appendix 4: Transmission-Line Equations Derived From Maxwell's Equations
  • Chapter 5 Resonators
  • 5.1 Fundamentals of Resonators
  • 5.1.1 Parallel Resonators
  • 5.1.2 Series Resonators
  • 5.2 Quality Factor
  • 5.2.1 Parallel Resonators
  • 5.2.2 Series Resonators
  • 5.2.3 Unloaded Quality Factor
  • 5.2.4 Loaded Quality Factor.
  • 8.3.2 Ring Hybrid
  • 8.3.3 Branch-Line Coupler
  • 8.4 Power Dividers
  • 8.4.1 Even-Mode Analysis
  • 8.4.2 Odd-Mode Analysis
  • 8.4.3 Superimposition of Even and Odd Modes
  • 8.5 Filters
  • 8.5.1 Low Pass Filter
  • 8.5.2 High Pass Filter Design
  • 8.5.3 Band-Pass Filter Design
  • 8.5.4 Band-Stop Filter Design
  • 8.5.5 Filter Design Using Impedance and Admittance Inverters
  • References
  • Problems
  • Chapter 9 Fundamentals of CMOS Transistors for RFIC Design
  • 9.1 MOSFET Basics
  • 9.1.1 MOSFET Structure
  • 9.1.2 MOSFET Operation
  • 9.2 MOSFET Models
  • 9.2.1 Physics-Based Models
  • 9.2.2 Empirical Models
  • 9.2.3 SPICE Models
  • 9.2.4 Passive MOSFET Models
  • 9.3 Important MOSFET Frquencies
  • 9.3.1 fT
  • 9.3.2 fmax
  • 9.4 Other Important MOSFET Parameters
  • 9.5 Varactor Diodes
  • 9.5.1 Varactor Structure and Operation
  • 9.5.2 Varactor Model and Characteristics
  • References
  • Problems
  • Chapter 10 Stability
  • 10.1 Fundamentals of Stability
  • 10.2 Determination of Stable and Unstable Regions
  • 10.3 Stability Consideration for N-Port Circuits
  • References
  • Problems
  • Chapter 11 Amplifiers
  • 11.1 Fundamentals of Amplifier Design
  • 11.1.1 Power Gain
  • 11.1.2 Gain Design
  • 11.2 Low Noise Amplifiers
  • 11.2.1 Noise Figure Fundamentals
  • 11.2.2 MOSFET Noise Parameters
  • 11.2.3 Noise Figure of Multistage Amplifiers
  • 11.2.4 Noise-Figure Design
  • 11.2.5 Design for Gain and Noise Figure
  • 11.3 Design Examples
  • 11.3.1 Unilateral Amplifier Design
  • 11.3.2 Bilateral Amplifier Design
  • 11.4 Power Amplifiers
  • 11.4.1 Power-Amplifier Parameters
  • 11.4.2 Power-Amplifier Types
  • 11.5 Balanced Amplifiers
  • 11.5.1 Differential Amplifiers
  • 11.5.2 Ninety-Degree Balanced Amplifiers
  • 11.5.3 Push-Pull Amplifiers
  • 11.6 Broadband Amplifiers
  • 11.6.1 Compensated Matching Networks.
  • 11.6.2 Distributed Amplifiers
  • 11.6.3 Feedback Amplifiers
  • 11.6.4 Cascoded Common-Source Amplifiers
  • 11.7 Current Mirrors
  • 11.7.1 Basic Current Mirror
  • 11.7.2 Cascode Current Mirror
  • References
  • Problems
  • References
  • Chapter 12 Oscillators
  • 12.1 Principle of Oscillation
  • 12.1.1 Oscillation Conditions
  • 12.1.2 Oscillation Determination
  • 12.2 Fundamentals of Oscillator Design
  • 12.2.1 Basic Oscillators
  • 12.2.2 Feedback Oscillators
  • 12.3 Phase Noise
  • 12.3.1 Fundamentals of Phase Noise
  • 12.3.2 Phase Noise Modeling
  • 12.3.3 Low Phase-Noise Design Consideration
  • 12.3.4 Effects of Phase Noise on Systems
  • 12.3.5 Analysis Example of Effects of Phase Noise
  • 12.4 Oscillator Circuits
  • 12.4.1 Cross-Coupled Oscillators
  • 12.4.2 Distributed Oscillators
  • 12.4.3 Push-Push Oscillators
  • References
  • Problems
  • Chapter 13 Mixers
  • 13.1 Fundamentals of Mixers
  • 13.1.1 Mixing Principle
  • 13.1.2 Mixer Parameters
  • 13.2 Mixer Types
  • 13.2.1 Single-Ended Mixer
  • 13.2.2 Single-Balanced Mixer
  • 13.2.3 Double-Balanced Mixer
  • 13.2.4 Doubly Double-Balanced Mixer
  • 13.3 Other Mixers
  • 13.3.1 Passive Mixer
  • 13.3.2 Image-Reject Mixer
  • 13.3.3 Quadrature Mixer
  • 13.3.4 Distributed Mixer
  • 13.4 Mixer Analysis and Design
  • 13.4.1 Switching Mixer Fundamental
  • 13.4.2 Single-Ended Mixer
  • 13.4.3 Single-Balanced Mixer
  • 13.4.4 Double-Balanced Mixer
  • 13.4.5 Source Degeneration in Mixer Design
  • 13.5 Sampling Mixer
  • 13.5.1 Fundamentals of Sampling
  • 13.5.2 Sampling Theory
  • 13.5.3 Sampling Process
  • 13.5.4 Sample and Hold
  • 13.5.5 Sampling Switch
  • 13.5.6 Integrated Sampling Mixer
  • References
  • Problems
  • Chapter 14 Switches
  • 14.1 Fundamentals of Switches
  • 14.1.1 Switch Operation
  • 14.1.2 Important Parameters
  • 14.2 Analysis of Switching MOSFET.