Radio-frequency integrated-circuit engineering /
"Complementary metal-oxide-semiconductor (CMOS) is a technology for constructing integrated circuits. This book thoroughly discusses the theory, analysis, design, and high-frequency/high-speed characteristics and applications of printed-circuit transmission lines used in integrated circuits and...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Chapter 1 Introduction
- Problems
- Chapter 2 Fundamentals of Electromagnetics
- 2.1 EM Field Parameters
- 2.2 Maxwell's Equations
- 2.3 Auxiliary Relations
- 2.3.1 Constitutive Relations
- 2.3.2 Current Relations
- 2.4 Sinusoidal Time-Varying Steady State
- 2.5 Boundary Conditions
- 2.5.1 General Boundary Conditions
- 2.5.2 Specific Boundary Conditions
- 2.6 Wave Equations
- 2.7 Power
- 2.8 Loss and Propagation Constant in Medium
- 2.9 Skin Depth
- 2.10 Surface Impedance
- Problems
- Chapter 3 Lumped Elements
- 3.1 Fundamentals of Lumped Elements
- 3.1.1 Basic Equations
- 3.2 Quality Factor of Lumped Elements
- 3.3 Modeling of Lumped Elements
- 3.4 Inductors
- 3.4.1 Inductor Configurations
- 3.4.2 Loss in Inductors
- 3.4.3 Equivalent-Circuit Models of Inductors
- 3.4.4 Resonance in Inductors
- 3.4.5 Quality Factor of Inductors
- 3.4.6 High Q Inductor Design Considerations
- 3.5 Lumped-Element Capacitors
- 3.5.1 Capacitor Configurations
- 3.5.2 Equivalent-Circuit Models of Capacitors
- 3.5.3 Resonance
- 3.5.4 Quality Factor
- 3.5.5 High Q Capacitor Design Considerations
- 3.6 Lumped-Element Resistors
- 3.6.1 Resistor Configurations
- 3.6.2 Basic Resistor Equations
- 3.6.3 Equivalent-Circuit Models of Resistors
- References
- Problems
- Chapter 4 Transmission Lines
- 4.1 Essentials of Transmission Lines
- 4.2 Transmission-Line Equations
- 4.2.1 General Transmission-Line Equations
- 4.2.2 Sinusoidal Steady-State Transmission-Line Equations
- 4.3 Transmission-Line Parameters
- 4.3.1 General Transmission Lines
- 4.3.2 Lossless Transmission Lines
- 4.3.3 Low Loss Transmission Lines
- 4.4 Per-Unit-Length Parameters R, L, C, and G
- 4.4.1 General Formulation
- 4.4.2 Formulation for Simple Transmission Lines.
- 4.5 Dielectric and Conductor Losses in Transmission Lines
- 4.5.1 Dielectric Attenuation Constant
- 4.5.2 Conductor Attenuation Constant
- 4.6 Dispersion and Distortion in Transmission Lines
- 4.6.1 Dispersion
- 4.6.2 Distortion
- 4.6.3 Distortion-Less Transmission Lines
- 4.7 Group Velocity
- 4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios
- 4.8.1 Impedance
- 4.8.2 Reflection Coefficients
- 4.8.3 Standing-Wave Ratio
- 4.8.4 Perfect Match and Total Reflection
- 4.8.5 Lossless Transmission Lines
- 4.9 Synthetic Transmission Lines
- 4.10 Tem and Quasi-Tem Transmission-Line Parameters
- 4.10.1 Static or Quasi-Static Analysis
- 4.10.2 Dynamic Analysis
- 4.11 Printed-Circuit Transmission Lines
- 4.11.1 Microstrip Line
- 4.11.2 Coplanar Waveguide
- 4.11.3 Coplanar Strips
- 4.11.4 Strip Line
- 4.11.5 Slot Line
- 4.11.6 Field Distributions
- 4.12 Transmission Lines in RFICs
- 4.12.1 Microstrip Line
- 4.12.2 Coplanar Waveguide
- 4.12.3 Coplanar Strips
- 4.12.4 Strip Line
- 4.12.5 Slot Line
- 4.12.6 Transitions and Junctions Between Transmission Lines
- 4.13 Multi-Conductor Transmission Lines
- 4.13.1 Transmission-Line Equations
- 4.13.2 Propagation Modes
- 4.13.3 Characteristic Impedance and Admittance Matrix
- 4.13.4 Mode Characteristic Impedances and Admittances
- 4.13.5 Impedance and Admittance Matrix
- 4.13.6 Lossless Multiconductor Transmission Lines
- References
- Problems
- Appendix 4: Transmission-Line Equations Derived From Maxwell's Equations
- Chapter 5 Resonators
- 5.1 Fundamentals of Resonators
- 5.1.1 Parallel Resonators
- 5.1.2 Series Resonators
- 5.2 Quality Factor
- 5.2.1 Parallel Resonators
- 5.2.2 Series Resonators
- 5.2.3 Unloaded Quality Factor
- 5.2.4 Loaded Quality Factor.
- 8.3.2 Ring Hybrid
- 8.3.3 Branch-Line Coupler
- 8.4 Power Dividers
- 8.4.1 Even-Mode Analysis
- 8.4.2 Odd-Mode Analysis
- 8.4.3 Superimposition of Even and Odd Modes
- 8.5 Filters
- 8.5.1 Low Pass Filter
- 8.5.2 High Pass Filter Design
- 8.5.3 Band-Pass Filter Design
- 8.5.4 Band-Stop Filter Design
- 8.5.5 Filter Design Using Impedance and Admittance Inverters
- References
- Problems
- Chapter 9 Fundamentals of CMOS Transistors for RFIC Design
- 9.1 MOSFET Basics
- 9.1.1 MOSFET Structure
- 9.1.2 MOSFET Operation
- 9.2 MOSFET Models
- 9.2.1 Physics-Based Models
- 9.2.2 Empirical Models
- 9.2.3 SPICE Models
- 9.2.4 Passive MOSFET Models
- 9.3 Important MOSFET Frquencies
- 9.3.1 fT
- 9.3.2 fmax
- 9.4 Other Important MOSFET Parameters
- 9.5 Varactor Diodes
- 9.5.1 Varactor Structure and Operation
- 9.5.2 Varactor Model and Characteristics
- References
- Problems
- Chapter 10 Stability
- 10.1 Fundamentals of Stability
- 10.2 Determination of Stable and Unstable Regions
- 10.3 Stability Consideration for N-Port Circuits
- References
- Problems
- Chapter 11 Amplifiers
- 11.1 Fundamentals of Amplifier Design
- 11.1.1 Power Gain
- 11.1.2 Gain Design
- 11.2 Low Noise Amplifiers
- 11.2.1 Noise Figure Fundamentals
- 11.2.2 MOSFET Noise Parameters
- 11.2.3 Noise Figure of Multistage Amplifiers
- 11.2.4 Noise-Figure Design
- 11.2.5 Design for Gain and Noise Figure
- 11.3 Design Examples
- 11.3.1 Unilateral Amplifier Design
- 11.3.2 Bilateral Amplifier Design
- 11.4 Power Amplifiers
- 11.4.1 Power-Amplifier Parameters
- 11.4.2 Power-Amplifier Types
- 11.5 Balanced Amplifiers
- 11.5.1 Differential Amplifiers
- 11.5.2 Ninety-Degree Balanced Amplifiers
- 11.5.3 Push-Pull Amplifiers
- 11.6 Broadband Amplifiers
- 11.6.1 Compensated Matching Networks.
- 11.6.2 Distributed Amplifiers
- 11.6.3 Feedback Amplifiers
- 11.6.4 Cascoded Common-Source Amplifiers
- 11.7 Current Mirrors
- 11.7.1 Basic Current Mirror
- 11.7.2 Cascode Current Mirror
- References
- Problems
- References
- Chapter 12 Oscillators
- 12.1 Principle of Oscillation
- 12.1.1 Oscillation Conditions
- 12.1.2 Oscillation Determination
- 12.2 Fundamentals of Oscillator Design
- 12.2.1 Basic Oscillators
- 12.2.2 Feedback Oscillators
- 12.3 Phase Noise
- 12.3.1 Fundamentals of Phase Noise
- 12.3.2 Phase Noise Modeling
- 12.3.3 Low Phase-Noise Design Consideration
- 12.3.4 Effects of Phase Noise on Systems
- 12.3.5 Analysis Example of Effects of Phase Noise
- 12.4 Oscillator Circuits
- 12.4.1 Cross-Coupled Oscillators
- 12.4.2 Distributed Oscillators
- 12.4.3 Push-Push Oscillators
- References
- Problems
- Chapter 13 Mixers
- 13.1 Fundamentals of Mixers
- 13.1.1 Mixing Principle
- 13.1.2 Mixer Parameters
- 13.2 Mixer Types
- 13.2.1 Single-Ended Mixer
- 13.2.2 Single-Balanced Mixer
- 13.2.3 Double-Balanced Mixer
- 13.2.4 Doubly Double-Balanced Mixer
- 13.3 Other Mixers
- 13.3.1 Passive Mixer
- 13.3.2 Image-Reject Mixer
- 13.3.3 Quadrature Mixer
- 13.3.4 Distributed Mixer
- 13.4 Mixer Analysis and Design
- 13.4.1 Switching Mixer Fundamental
- 13.4.2 Single-Ended Mixer
- 13.4.3 Single-Balanced Mixer
- 13.4.4 Double-Balanced Mixer
- 13.4.5 Source Degeneration in Mixer Design
- 13.5 Sampling Mixer
- 13.5.1 Fundamentals of Sampling
- 13.5.2 Sampling Theory
- 13.5.3 Sampling Process
- 13.5.4 Sample and Hold
- 13.5.5 Sampling Switch
- 13.5.6 Integrated Sampling Mixer
- References
- Problems
- Chapter 14 Switches
- 14.1 Fundamentals of Switches
- 14.1.1 Switch Operation
- 14.1.2 Important Parameters
- 14.2 Analysis of Switching MOSFET.