Cargando…

Aperiodic Order.

A comprehensive introductory monograph on the theory of aperiodic order, with numerous illustrations and examples.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baake, Michael
Otros Autores: Grimm, Uwe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Encyclopedia of mathematics and its applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn904404337
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 150304s2013 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d GILDS  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781316184035 
020 |a 131618403X 
029 1 |a AU@  |b 000056075688 
035 |a (OCoLC)904404337 
050 4 |a QA640.72 .B33 2015 
082 0 4 |a 548.7 
049 |a UAMI 
100 1 |a Baake, Michael. 
245 1 0 |a Aperiodic Order. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (553 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of Mathematics and its Applications ;  |v v. 149 
588 0 |a Print version record. 
505 0 |a Cover; Half-title; Series information; Title page; Copyright information; Table of contents; Foreword; Preface; Chapter 1 Introduction; Chapter 2 Preliminaries; 2.1. Point sets; 2.2. Voronoi and Delone cells; 2.3. Groups; 2.4. Perron-Frobenius theory; 2.5. Number-theoretic tools; Chapter 3 Lattices and Crystals; 3.1. Periodicity and lattices; 3.2. The crystallographic restriction; 3.3. Root lattices; 3.4. Minkowski embedding; Chapter 4 Symbolic Substitutions and Inflations; 4.1. Substitution rules; 4.2. Hulls and their properties; 4.3. Symmetries, invariant measures and ergodicity. 
505 8 |a 4.4. Metallic means sequences4.5. Period doubling and paper folding; 4.6. Thue-Morse substitution; 4.7. Rudin-Shapiro and Kolakoski sequences; 4.8. Complexity and further directions; 4.9. Block substitutions; Chapter 5 Patterns and Tilings; 5.1. Patterns and local indistinguishability; 5.2. Local derivability; 5.3. Repetitivity and finite local complexity; 5.4. Geometric hull; 5.5. Proximality; 5.6. Symmetry and inflation; 5.7. Local rules; Chapter 6 Inflation Tilings; 6.1. Ammann-Beenker tilings; 6.2. Penrose tilings and their relatives; 6.3. Square triangle and shield tilings. 
505 8 |a 6.4. Planar tilings with integer inflation multiplier6.5. Examples of non-Pisot tilings; 6.6. Pinwheel tilings; 6.7. Tilings in higher dimensions; 6.8. Colourful examples; Chapter 7 Projection Method and Model Sets; 7.1. Silver mean chain via projection; 7.2. Cut and project schemes and model sets; 7.3. Cyclotomic model sets; 7.4. Icosahedral model sets and beyond; 7.5. Alternative constructions; Chapter 8 Fourier Analysis and Measures; 8.1. Fourier series; 8.2. Almost periodic functions; 8.3. Fourier transform of functions; 8.4. Fourier transform of distributions. 
505 8 |a 8.5. Measures and their decomposition8.6. Fourier transform of measures; 8.7. Fourier-Stieltjes coefficients of measures on S1; 8.8. Volume averaged convolutions; Chapter 9 Diffraction; 9.1. Mathematical diffraction theory; 9.2. Poisson's summation formula and perfect crystals; 9.3. Autocorrelation and diffraction of the silver mean chain; 9.4. Autocorrelation and diffraction of regular model sets; 9.5. Pure point diffraction of weighted Dirac combs; 9.6. Homometric point sets; Chapter 10 Beyond Model Sets; 10.1. Diffraction of the Thue-Morse chain. 
505 8 |a 10.2. Diffraction of the Rudin-Shapiro chain10.3. Diffraction of lattice subsets; 10.4. Visible lattice points; 10.5. Extension to Meyer sets; Chapter 11 Random Structures; 11.1. Probabilistic preliminaries; 11.2. Bernoulli systems; 11.3. Renewal processes on the line; 11.4. Point processes from random matrix theory; 11.5. Lattice systems with interaction; 11.6. Random tilings; Appendix A The Icosahedral Group; Appendix B The Dynamical Spectrum; References; List of Definitions; List of Examples; List of Remarks; Index. 
520 |a A comprehensive introductory monograph on the theory of aperiodic order, with numerous illustrations and examples. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Aperiodicity. 
650 0 |a Crystallography, Mathematical. 
650 6 |a Apériodicité. 
650 6 |a Cristallographie mathématique. 
650 7 |a Aperiodicity  |2 fast 
650 7 |a Crystallography, Mathematical  |2 fast 
700 1 |a Grimm, Uwe. 
758 |i has work:  |a Aperiodic order (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGkwhBQQHXbV86YqPKc3wC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Baake, Michael.  |t Aperiodic Order: Volume 1, A Mathematical Invitation.  |d Cambridge : Cambridge University Press, ©2013  |z 9780521869911 
830 0 |a Encyclopedia of mathematics and its applications. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1823053  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34205210 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33402764 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27275426 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1823053 
994 |a 92  |b IZTAP