Cargando…

Data-variant kernel analysis /

"This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Motai, Yuichi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, 2015.
Colección:Wiley series on adaptive and cognitive dynamic systems.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn904047560
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150224s2015 nju ob 001 0 eng
010 |a  2015007727 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d IDEBK  |d EBLCP  |d N$T  |d DG1  |d E7B  |d YDXCP  |d RECBK  |d COO  |d OCLCQ  |d DEBBG  |d K6U  |d IDB  |d COCUF  |d DEBSZ  |d CCO  |d LIP  |d PIFFA  |d FVL  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d STF  |d OCLCF  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d UX1  |d OCLCQ  |d DLC  |d TUHNV  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCL 
019 |a 992886051  |a 1055369505  |a 1066464168  |a 1081216572  |a 1100435965  |a 1101719802  |a 1124405168  |a 1148101767  |a 1391399169 
020 |a 9781119019343  |q (ePub) 
020 |a 1119019346  |q (ePub) 
020 |a 9781119019336  |q (Adobe PDF) 
020 |a 1119019338  |q (Adobe PDF) 
020 |a 9781119019350 
020 |a 1119019354 
020 |a 111901932X  |q (hardback) 
020 |a 9781119019329  |q (hardback) 
020 |z 9781119019329  |q (hardback) 
029 1 |a AU@  |b 000055036071 
029 1 |a AU@  |b 000060217036 
029 1 |a CHNEW  |b 000944043 
029 1 |a CHVBK  |b 480242739 
029 1 |a DEBBG  |b BV042991392 
029 1 |a DEBBG  |b BV043397562 
029 1 |a DEBBG  |b BV044072447 
029 1 |a DEBSZ  |b 485056194 
029 1 |a GBVCP  |b 836347765 
035 |a (OCoLC)904047560  |z (OCoLC)992886051  |z (OCoLC)1055369505  |z (OCoLC)1066464168  |z (OCoLC)1081216572  |z (OCoLC)1100435965  |z (OCoLC)1101719802  |z (OCoLC)1124405168  |z (OCoLC)1148101767  |z (OCoLC)1391399169 
042 |a pcc 
050 0 0 |a QA353.K47 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 0 |a 515/.9  |2 23 
084 |a COM051300  |2 bisacsh 
049 |a UAMI 
100 1 |a Motai, Yuichi. 
245 1 0 |a Data-variant kernel analysis /  |c Yuichi Motai, Sensory Intelligence Laboratory, Department of Electrical and Computer Engineering, Virginia Commonwealth University Richmond, VA. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley series on adaptive and cognitive dynamic systems 
520 |a "This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Acknowledgments; Chapter 1 Survey; 1.1 Introduction of Kernel Analysis; 1.2 Kernel Offline Learning; 1.2.1 Choose the Appropriate Kernels; 1.2.2 Adopt KA into the Traditionally Developed Machine Learning Techniques; 1.2.3 Structured Database with Kernel; 1.3 Distributed Database with Kernel; 1.3.1 Multiple Database Representation; 1.3.2 Kernel Selections Among Heterogeneous Multiple Databases; 1.3.3 Multiple Database Representation KA Applications to Distributed Databases; 1.4 Kernel Online Learning. 
505 8 |a 1.4.1 Kernel-Based Online Learning Algorithms1.4.2 Adopt ""Online"" KA Framework into the Traditionally Developed Machine Learning Techniques; 1.4.3 Relationship Between Online Learning and Prediction Techniques; 1.5 Prediction with Kernels; 1.5.1 Linear Prediction; 1.5.2 Kalman Filter; 1.5.3 Finite-State Model; 1.5.4 Autoregressive Moving Average Model; 1.5.5 Comparison of Four Models; 1.6 Future Direction and Conclusion; References; Chapter 2 Offline Kernel Analysis; 2.1 Introduction; 2.2 Kernel Feature Analysis; 2.2.1 Kernel Basics; 2.2.2 Kernel Principal Component Analysis (KPCA). 
505 8 |a 2.2.3 Accelerated Kernel Feature Analysis (AKFA)2.2.4 Comparison of the Relevant Kernel Methods; 2.3 Principal Composite Kernel Feature Analysis (PC-KFA); 2.3.1 Kernel Selections; 2.3.2 Kernel Combinatory Optimization; 2.4 Experimental Analysis; 2.4.1 Cancer Image Datasets; 2.4.2 Kernel Selection; 2.4.3 Kernel Combination and Reconstruction; 2.4.4 Kernel Combination and Classification; 2.4.5 Comparisons of Other Composite Kernel Learning Studies; 2.4.6 Computation Time; 2.5 Conclusion; References; Chapter 3 Group Kernel Feature Analysis; 3.1 Introduction. 
505 8 |a 3.2 Kernel Principal Component Analysis (KPCA)3.3 Kernel Feature Analysis (KFA) for Distributed Databases; 3.3.1 Extract Data-Dependent Kernels Using KFA; 3.3.2 Decomposition of Database Through Data Association via Recursively Updating Kernel Matrices; 3.4 Group Kernel Feature Analysis (GKFA); 3.4.1 Composite Kernel: Kernel Combinatory Optimization; 3.4.2 Multiple Databases Using Composite Kernel; 3.5 Experimental Results; 3.5.1 Cancer Databases; 3.5.2 Optimal Selection of Data-Dependent Kernels; 3.5.3 Kernel Combinatory Optimization; 3.5.4 Composite Kernel for Multiple Databases. 
505 8 |a 3.5.5 K-NN Classification Evaluation with ROC3.5.6 Comparison of Results with Other Studies on Colonography; 3.5.7 Computational Speed and Scalability Evaluation of GKFA; 3.6 Conclusions; References; Chapter 4 Online Kernel Analysis; 4.1 Introduction; 4.2 Kernel Basics: A Brief Review; 4.2.1 Kernel Principal Component Analysis; 4.2.2 Kernel Selection; 4.3 Kernel Adaptation Analysis of PC-KFA; 4.4 Heterogeneous vs. Homogeneous Data for Online PC-KFA; 4.4.1 Updating the Gram Matrix of the Online Data; 4.4.2 Composite Kernel for Online Data. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Kernel functions. 
650 0 |a Big data  |x Mathematics. 
650 6 |a Noyaux (Mathématiques) 
650 6 |a Données volumineuses  |x Mathématiques. 
650 7 |a COMPUTERS  |x Programming  |x Algorithms.  |2 bisacsh 
650 7 |a Kernel functions  |2 fast 
758 |i has work:  |a Data-variant kernel analysis (Work)  |1 https://id.oclc.org/worldcat/entity/E39PCXtJdCTdGvVh3tQbDhVfjd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Motai, Yuichi.  |t Data-variant kernel analysis.  |d Hoboken : John Wiley & Sons Inc., 2015  |z 9781119019329  |w (DLC) 2015000041 
830 0 |a Wiley series on adaptive and cognitive dynamic systems. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895925  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28554224 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1895925 
938 |a ebrary  |b EBRY  |n ebr11048136 
938 |a EBSCOhost  |b EBSC  |n 985086 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30169995 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00612047 
938 |a YBP Library Services  |b YANK  |n 12388908 
938 |a YBP Library Services  |b YANK  |n 12673845 
938 |a YBP Library Services  |b YANK  |n 12404474 
938 |a Internet Archive  |b INAR  |n datavariantkerne0000mota 
994 |a 92  |b IZTAP