|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn904047560 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
150224s2015 nju ob 001 0 eng |
010 |
|
|
|a 2015007727
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d IDEBK
|d EBLCP
|d N$T
|d DG1
|d E7B
|d YDXCP
|d RECBK
|d COO
|d OCLCQ
|d DEBBG
|d K6U
|d IDB
|d COCUF
|d DEBSZ
|d CCO
|d LIP
|d PIFFA
|d FVL
|d ZCU
|d OCLCQ
|d MERUC
|d U3W
|d OCLCQ
|d STF
|d OCLCF
|d ICG
|d INT
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d UX1
|d OCLCQ
|d DLC
|d TUHNV
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 992886051
|a 1055369505
|a 1066464168
|a 1081216572
|a 1100435965
|a 1101719802
|a 1124405168
|a 1148101767
|a 1391399169
|
020 |
|
|
|a 9781119019343
|q (ePub)
|
020 |
|
|
|a 1119019346
|q (ePub)
|
020 |
|
|
|a 9781119019336
|q (Adobe PDF)
|
020 |
|
|
|a 1119019338
|q (Adobe PDF)
|
020 |
|
|
|a 9781119019350
|
020 |
|
|
|a 1119019354
|
020 |
|
|
|a 111901932X
|q (hardback)
|
020 |
|
|
|a 9781119019329
|q (hardback)
|
020 |
|
|
|z 9781119019329
|q (hardback)
|
029 |
1 |
|
|a AU@
|b 000055036071
|
029 |
1 |
|
|a AU@
|b 000060217036
|
029 |
1 |
|
|a CHNEW
|b 000944043
|
029 |
1 |
|
|a CHVBK
|b 480242739
|
029 |
1 |
|
|a DEBBG
|b BV042991392
|
029 |
1 |
|
|a DEBBG
|b BV043397562
|
029 |
1 |
|
|a DEBBG
|b BV044072447
|
029 |
1 |
|
|a DEBSZ
|b 485056194
|
029 |
1 |
|
|a GBVCP
|b 836347765
|
035 |
|
|
|a (OCoLC)904047560
|z (OCoLC)992886051
|z (OCoLC)1055369505
|z (OCoLC)1066464168
|z (OCoLC)1081216572
|z (OCoLC)1100435965
|z (OCoLC)1101719802
|z (OCoLC)1124405168
|z (OCoLC)1148101767
|z (OCoLC)1391399169
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA353.K47
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
0 |
|a 515/.9
|2 23
|
084 |
|
|
|a COM051300
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Motai, Yuichi.
|
245 |
1 |
0 |
|a Data-variant kernel analysis /
|c Yuichi Motai, Sensory Intelligence Laboratory, Department of Electrical and Computer Engineering, Virginia Commonwealth University Richmond, VA.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley,
|c 2015.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Wiley series on adaptive and cognitive dynamic systems
|
520 |
|
|
|a "This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications"--
|c Provided by publisher
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Acknowledgments; Chapter 1 Survey; 1.1 Introduction of Kernel Analysis; 1.2 Kernel Offline Learning; 1.2.1 Choose the Appropriate Kernels; 1.2.2 Adopt KA into the Traditionally Developed Machine Learning Techniques; 1.2.3 Structured Database with Kernel; 1.3 Distributed Database with Kernel; 1.3.1 Multiple Database Representation; 1.3.2 Kernel Selections Among Heterogeneous Multiple Databases; 1.3.3 Multiple Database Representation KA Applications to Distributed Databases; 1.4 Kernel Online Learning.
|
505 |
8 |
|
|a 1.4.1 Kernel-Based Online Learning Algorithms1.4.2 Adopt ""Online"" KA Framework into the Traditionally Developed Machine Learning Techniques; 1.4.3 Relationship Between Online Learning and Prediction Techniques; 1.5 Prediction with Kernels; 1.5.1 Linear Prediction; 1.5.2 Kalman Filter; 1.5.3 Finite-State Model; 1.5.4 Autoregressive Moving Average Model; 1.5.5 Comparison of Four Models; 1.6 Future Direction and Conclusion; References; Chapter 2 Offline Kernel Analysis; 2.1 Introduction; 2.2 Kernel Feature Analysis; 2.2.1 Kernel Basics; 2.2.2 Kernel Principal Component Analysis (KPCA).
|
505 |
8 |
|
|a 2.2.3 Accelerated Kernel Feature Analysis (AKFA)2.2.4 Comparison of the Relevant Kernel Methods; 2.3 Principal Composite Kernel Feature Analysis (PC-KFA); 2.3.1 Kernel Selections; 2.3.2 Kernel Combinatory Optimization; 2.4 Experimental Analysis; 2.4.1 Cancer Image Datasets; 2.4.2 Kernel Selection; 2.4.3 Kernel Combination and Reconstruction; 2.4.4 Kernel Combination and Classification; 2.4.5 Comparisons of Other Composite Kernel Learning Studies; 2.4.6 Computation Time; 2.5 Conclusion; References; Chapter 3 Group Kernel Feature Analysis; 3.1 Introduction.
|
505 |
8 |
|
|a 3.2 Kernel Principal Component Analysis (KPCA)3.3 Kernel Feature Analysis (KFA) for Distributed Databases; 3.3.1 Extract Data-Dependent Kernels Using KFA; 3.3.2 Decomposition of Database Through Data Association via Recursively Updating Kernel Matrices; 3.4 Group Kernel Feature Analysis (GKFA); 3.4.1 Composite Kernel: Kernel Combinatory Optimization; 3.4.2 Multiple Databases Using Composite Kernel; 3.5 Experimental Results; 3.5.1 Cancer Databases; 3.5.2 Optimal Selection of Data-Dependent Kernels; 3.5.3 Kernel Combinatory Optimization; 3.5.4 Composite Kernel for Multiple Databases.
|
505 |
8 |
|
|a 3.5.5 K-NN Classification Evaluation with ROC3.5.6 Comparison of Results with Other Studies on Colonography; 3.5.7 Computational Speed and Scalability Evaluation of GKFA; 3.6 Conclusions; References; Chapter 4 Online Kernel Analysis; 4.1 Introduction; 4.2 Kernel Basics: A Brief Review; 4.2.1 Kernel Principal Component Analysis; 4.2.2 Kernel Selection; 4.3 Kernel Adaptation Analysis of PC-KFA; 4.4 Heterogeneous vs. Homogeneous Data for Online PC-KFA; 4.4.1 Updating the Gram Matrix of the Online Data; 4.4.2 Composite Kernel for Online Data.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Kernel functions.
|
650 |
|
0 |
|a Big data
|x Mathematics.
|
650 |
|
6 |
|a Noyaux (Mathématiques)
|
650 |
|
6 |
|a Données volumineuses
|x Mathématiques.
|
650 |
|
7 |
|a COMPUTERS
|x Programming
|x Algorithms.
|2 bisacsh
|
650 |
|
7 |
|a Kernel functions
|2 fast
|
758 |
|
|
|i has work:
|a Data-variant kernel analysis (Work)
|1 https://id.oclc.org/worldcat/entity/E39PCXtJdCTdGvVh3tQbDhVfjd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Motai, Yuichi.
|t Data-variant kernel analysis.
|d Hoboken : John Wiley & Sons Inc., 2015
|z 9781119019329
|w (DLC) 2015000041
|
830 |
|
0 |
|a Wiley series on adaptive and cognitive dynamic systems.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895925
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28554224
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1895925
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11048136
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 985086
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis30169995
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00612047
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12388908
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12673845
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12404474
|
938 |
|
|
|a Internet Archive
|b INAR
|n datavariantkerne0000mota
|
994 |
|
|
|a 92
|b IZTAP
|