|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn903973820 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150212s1996 ne ad ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCQ
|d OCLCF
|d IDEBK
|d EBLCP
|d YDXCP
|d OCLCQ
|d N$T
|d AGLDB
|d OCLCQ
|d D6H
|d VTS
|d COCUF
|d STF
|d MERUC
|d LOA
|d ZCU
|d ICG
|d OCLCQ
|d VT2
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 913090356
|a 922950426
|a 992804656
|
020 |
|
|
|a 9783110900125
|q (e-book)
|
020 |
|
|
|a 3110900122
|q (e-book)
|
020 |
|
|
|z 9789067642026
|
020 |
|
|
|z 9783110355369
|
029 |
1 |
|
|a DEBSZ
|b 493158944
|
035 |
|
|
|a (OCoLC)903973820
|z (OCoLC)913090356
|z (OCoLC)922950426
|z (OCoLC)992804656
|
037 |
|
|
|a 807165
|b MIL
|
050 |
|
4 |
|a QA55
|b .C44 1996eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.35
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chedrednichenko, V. G.,
|e author.
|
245 |
1 |
0 |
|a Inverse logarithmic potential problem /
|c V.G. Cherednichenko.
|
264 |
|
1 |
|a Utrecht, the Netherlands :
|b VSP,
|c 1996.
|
300 |
|
|
|a 1 online resource (255 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Inverse and ill-posed problems series
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed February 12, 2015).
|
505 |
0 |
|
|a Introduction -- Chapter 1. Formulation of Inverse Logarithmic Potential Problem. Fundamental Equation -- Â1.1 Formulation of inverse problem -- Â1.2 Nonlinear boundary value problem for mapping function -- Â1.3 The analytic continuation of the potential across a boundary -- Â1.4 The boundary analyticity of domain is a solution to an inverse problem -- Â1.5 The structure of inverse problem solution. final solvability. Examples -- Chapter 2. Local Solvability of an Inverse Problem -- Â2.1 Univalent function variation -- Â2.2 Local theorem of existence
|
505 |
8 |
|
|a Â2.3 Linearization of the boundary value problemÂ2.4 The auxiliary problem -- Â2.5 The Newton-Kantorovitch method -- Â2.6 The explicit solution of the linear problem -- Â2.7 The local uniqueness theorem -- Â2.8 The density variation. The equivalent solution set of the inverse problems. Remarks -- Â2.9 The complex-valued density case -- Â2.10 Existence theorems for the inverse problem for small constant densities -- Â2.11 Proof of theorems -- Chapter 3. The Estimate of Bounded Univalent Function Coefficients and Univalent Polynomials
|
505 |
8 |
|
|a Â3.1 Classical estimates. Classes of bounded functions and with bounded image areaÂ3.2 The estimate of univalent polynomials coefficients -- Â3.3 The Diedonne-Horowitz inequalities for univalent polynomials -- Â3.4 Numerical estimates of univalent polynomials coefficients -- Chapter 4. Mass Potential Estimates. Necessary Conditions for Solvability. A Priori Estimates for Inverse Problem Solution -- Â4.1 Exact estimates for a mass potential gradient in the three-dimensional case. Extremal domain -- Â4.2 Exact estimates of logarithmic mass potential
|
505 |
8 |
|
|a Â4.3 A priori estimates for inverse potential problem solutionÂ4.4 On zeros of a potential mass gradient -- Â4.5 Estimates of mass potential derivatives in a fixed angle -- Â4.6 The estimates of the mass potential derivatives in the disk -- Â4.7 The estimate of the mass potential based on the Calderon-Zygmund results for the singular integral -- Â4.8 The necessary solvability conditions, a priori estimates â€? using the univalent function theory -- Chapter 5. The Continuation by the Parameter of an Inverse Problem Solution
|
505 |
8 |
|
|a Â5.1 The dependence of an inverse problem solution on the parameter -- a constant densityÂ5.2 The theorem on the continuation of a solution by the parameter -- Â5.3 Inverse potential problems and univalent functions -- Chapter 6. On the Analyticity and Smoothness of an Inverse Problem Solution -- Â6.1 Theorem on the smoothness of inverse problem solutions -- Â6.2 Applications of the theorem on smoothness, in connection with free boundary smoothness -- Â6.3 Analytical continuation of the potential through the angle points
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Logarithms.
|
650 |
|
0 |
|a Inverse problems (Differential equations)
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Logarithmes.
|
650 |
|
6 |
|a Problèmes inverses (Équations différentielles)
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
7 |
|a logarithms.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Inverse problems (Differential equations)
|2 fast
|
650 |
|
7 |
|a Logarithms
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
758 |
|
|
|i has work:
|a Inverse logarithmic potential problem (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGXtQFPc7RwWMJfTVxqPcP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chedrednichenko, V.G.
|t Inverse Logarithmic Potential Problem.
|d Munchen : De Gruyter, ©1996
|z 9789067642026
|
830 |
|
0 |
|a Inverse and ill-posed problems series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3049485
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3049485
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11008843
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 832687
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis13820699
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10852307
|
994 |
|
|
|a 92
|b IZTAP
|