Identification problems of wave phenomena : theory and numerics /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Utrecht, the Netherlands :
VSP,
1999.
|
Colección: | Inverse and ill-posed problems series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction
- Chapter 1. Statements of the direct and inverse problems. Examples
- 1.1. Introduction
- 1.2. Inverse Problems of Mathematical Physics
- 1.3. Inverse problem for the wave equation
- 1.4. The equation of plane waves. The d�Alembert formula
- 1.5. The Cauchy problem
- 1.6. The d�Alembert operator with smooth initial data
- 1.7. The Kirchhoff and Poisson formulae
- 1.8. Huygens principle
- 1.9. Time-like and space-like surfaces
- 1.10. Inverse problems with smooth initial data
- 1.11. Inverse problem for the acoustic equation
- Chapter 2. Volterra operator equations2.1. Main definitions
- 2.2. Local well-posedness
- 2.3. Well-posedness for sufficiently small data
- 2.4. Well-posedness in the neighborhood of the exact solution
- Chapter 3. Inverse problems for Maxwell�s equations
- 3.1. Introduction
- 3.2. Reduction of inverse problem for Maxwell�s equations to a Volterra operator equation
- 3.3. Local well-posedness and global uniqueness
- 3.4. Well-posedness in the neighborhood of the exact solution
- Chapter 4. Linearization and Newton-Kantorovich method
- 4.1. Linearization of Volterra operator equations4.2. he linearized inverse problem for the wave equation
- 4.3. The Newton-Kantorovich method
- Chapter 5. The Gel�fand
- Levitan Method
- 5.1. Introduction
- 5.2. Gel�fand-Levitan�s approach to multidimensional inverse problems
- 5.3. Discrete inverse problems
- 5.4. Discrete direct problems
- 5.5. An auxiliary problem
- 5.6. A necessary condition for the existence of the global solution to the discrete inverse problem
- 5.7. Sufficient conditions for the existence of the global solution to the discrete inverse problemChapter 6. Regularization
- 6.1. Introduction
- 6.2. Volterra regularization
- Chapter 7. The method of the optimal control
- 7.1. Introduction
- 7.2. Discrete inverse problem
- 7.3. Special representation for the solution to the discrete direct problem
- 7.4. Uniqueness of the stationary point
- Chapter 8. Inversion of finite-difference schemes
- 8.1. Convergence of the method of inversion of finite-difference schemes
- 8.2. Picard and Caratheodory successive approximationsChapter 9. Strongly ill-posed problems
- 9.1. A strongly ill-posed problem for the Laplace equation
- 9.2. Conditional continuous dependence on the data
- 9.3. Approximate solutions to the Cauchy problem for the Laplace equation
- 9.4. Approximate solutions to the non-characteristic problem for the multidimensional heat equation
- 9.5. Existence of solutions satisfying operator inequalities
- Chapter 10. Identification problems related to first-order scalar semilinear equations