Cargando…

Investigation methods for inverse problems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Romanov, V. G. (Vladimir Gavrilovich) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Utrecht ; Boston : VSP, 2002.
Colección:Inverse and ill-posed problems series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn903970026
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 021003s2002 ne ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCQ  |d DEBBG  |d OCLCF  |d IDEBK  |d EBLCP  |d DEBSZ  |d YDXCP  |d OCLCQ  |d COCUF  |d STF  |d MERUC  |d LOA  |d ZCU  |d ICG  |d OCLCQ  |d VT2  |d K6U  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 913090017  |a 922950405 
020 |a 9783110943849  |q (e-book) 
020 |a 3110943840  |q (e-book) 
020 |z 9067643610  |q (cover)  |z 9067643601 (t. p. verso) 
020 |z 9789067643610 
029 1 |a DEBBG  |b BV042525040 
029 1 |a DEBSZ  |b 446768413 
035 |a (OCoLC)903970026  |z (OCoLC)913090017  |z (OCoLC)922950405 
037 |a 807324  |b MIL 
050 4 |a QC20.7.D5  |b R64 2002eb 
082 0 4 |a 530.15/535  |2 21 
049 |a UAMI 
100 1 |a Romanov, V. G.  |q (Vladimir Gavrilovich),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJrGym9gPjbQkj6pKwbDbd 
245 1 0 |a Investigation methods for inverse problems /  |c V.G. Romanov. 
264 1 |a Utrecht ;  |a Boston :  |b VSP,  |c 2002. 
300 |a 1 online resource (292 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Inverse and ill-posed problems series 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Preface -- 1 Introduction -- 1.1 One-dimensional inverse kinematics problem -- 1.2 Inverse dynamical problem for a string -- 1.3 Inverse problems for a layered medium -- 2 Ray statements of inverse problems -- 2.1 Posing of the inverse problems -- 2.2 Asymptotic expansion -- 2.2.1 Asymptotic expansion of the solution -- 2.2.2 Reduction of the inverse problem -- 2.2.3 Construction of Ï?(x, y) -- 2.2.4 Proof of the expansion in the odd-dimensional case -- 2.2.5 Proof of the expansion in the even-dimensional case -- 2.2.6 Proof of the auxiliary lemma 
505 8 |a 2.3 Uniqueness theorems for the inverse problem2.3.1 A proof of the stability estimate for the integral geometry problem -- 2.3.2 Uniqueness theorem for the integral geometry problem related to a vector field -- 2.3.3 Proof of the uniqueness theorem for inverse kinematics problem -- 2.3.4 The wave equation with an attenuation -- 2.3.5 Concluding remarks -- 2.4 Inverse problems related to a local heterogeneity -- 3 Local solvability of some inverse problems -- 3.1 Banachâ€?s spaces of analytic functions -- 3.2 Determining coefficients of the lower terms 
505 8 |a 3.2.1 Determining a coefficient of the lower term3.2.2 Determining an attenuation coefficient -- 3.3 Determining the speed of the sound -- 3.4 A regularization method for solving an inverse problem -- 3.4.1 Theorems related to the system of integro-differential equations -- 3.4.2 Estimates of a solution to the algebraic equations -- 3.4.3 Convergence the approximate solution to the exact one -- 4 Inverse problems with single measurements -- 4.1 Determining coefficient of the lowest term -- 4.1.1 Statement of the problem and stability estimates 
505 8 |a 4.1.2 Proof of the stability theorems4.1.3 Proof of Lemma 4.1.3 -- 4.1.4 Proof of Lemma 4.1.4 -- 4.2 Determining coefficients under first derivatives -- 4.3 Determining the speed of sound in the wave equation -- 4.3.1 Formulation of the problem and a stability estimate of the solution -- 4.3.2 Proof of Theorem 4.3.1 -- 4.3.3 Proof of Lemma 4.3.5 -- 4.3.4 Proof of Lemma 4.3.6 -- 4.3.5 Proof of the inequality (4.3.24) -- 4.4 Case of a point source -- 4.4.1 Formulations of the problem and results -- 4.4.2 Proofs of the stability theorems 
505 8 |a 4.4.3 Properties of a solution to problem (4.4.1)4.4.4 Proof of Lemma 4.4.3 -- 4.4.5 Proof of Lemma 4.4.4 -- 5 Stability estimates related to inverse problems for the transport equation -- 5.1 The problem of determining the relaxation and a density of inner sources -- 5.1.1 Statement of basic and auxiliary problems -- 5.1.2 The basic results -- 5.1.3 Proof of Theorem 5.1.1 -- 5.1.4 Proof of the auxiliary lemmas -- 5.2 A stability estimate in the problem of determining the dispersion index and relaxation in 2D -- 5.2.1 Statement of the problem and the basic results 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Inverse problems (Differential equations)  |x Numerical solutions. 
650 0 |a Mathematical physics. 
650 6 |a Problèmes inverses (Équations différentielles)  |x Solutions numériques. 
650 6 |a Physique mathématique. 
650 7 |a Inverse problems (Differential equations)  |x Numerical solutions  |2 fast 
650 7 |a Mathematical physics  |2 fast 
758 |i has work:  |a Investigation methods for inverse problems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH7fYQvygMfrwcttRd9kXd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Romanov, V.G.  |t Investigation methods for inverse problems.  |d Utrecht : VSP, 2002  |h xii, 280 pages ; 25 cm.  |k Inverse and ill-posed problems series  |z 9789067643610  |w (DLC) 2002512842  |w (OCoLC)50053010 
830 0 |a Inverse and ill-posed problems series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3049581  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3049581 
938 |a ebrary  |b EBRY  |n ebr11008961 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis13829276 
938 |a YBP Library Services  |b YANK  |n 10853164 
994 |a 92  |b IZTAP