|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn903970026 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
021003s2002 ne ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCQ
|d DEBBG
|d OCLCF
|d IDEBK
|d EBLCP
|d DEBSZ
|d YDXCP
|d OCLCQ
|d COCUF
|d STF
|d MERUC
|d LOA
|d ZCU
|d ICG
|d OCLCQ
|d VT2
|d K6U
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 913090017
|a 922950405
|
020 |
|
|
|a 9783110943849
|q (e-book)
|
020 |
|
|
|a 3110943840
|q (e-book)
|
020 |
|
|
|z 9067643610
|q (cover)
|z 9067643601 (t. p. verso)
|
020 |
|
|
|z 9789067643610
|
029 |
1 |
|
|a DEBBG
|b BV042525040
|
029 |
1 |
|
|a DEBSZ
|b 446768413
|
035 |
|
|
|a (OCoLC)903970026
|z (OCoLC)913090017
|z (OCoLC)922950405
|
037 |
|
|
|a 807324
|b MIL
|
050 |
|
4 |
|a QC20.7.D5
|b R64 2002eb
|
082 |
0 |
4 |
|a 530.15/535
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Romanov, V. G.
|q (Vladimir Gavrilovich),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJrGym9gPjbQkj6pKwbDbd
|
245 |
1 |
0 |
|a Investigation methods for inverse problems /
|c V.G. Romanov.
|
264 |
|
1 |
|a Utrecht ;
|a Boston :
|b VSP,
|c 2002.
|
300 |
|
|
|a 1 online resource (292 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Inverse and ill-posed problems series
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface -- 1 Introduction -- 1.1 One-dimensional inverse kinematics problem -- 1.2 Inverse dynamical problem for a string -- 1.3 Inverse problems for a layered medium -- 2 Ray statements of inverse problems -- 2.1 Posing of the inverse problems -- 2.2 Asymptotic expansion -- 2.2.1 Asymptotic expansion of the solution -- 2.2.2 Reduction of the inverse problem -- 2.2.3 Construction of Ï?(x, y) -- 2.2.4 Proof of the expansion in the odd-dimensional case -- 2.2.5 Proof of the expansion in the even-dimensional case -- 2.2.6 Proof of the auxiliary lemma
|
505 |
8 |
|
|a 2.3 Uniqueness theorems for the inverse problem2.3.1 A proof of the stability estimate for the integral geometry problem -- 2.3.2 Uniqueness theorem for the integral geometry problem related to a vector field -- 2.3.3 Proof of the uniqueness theorem for inverse kinematics problem -- 2.3.4 The wave equation with an attenuation -- 2.3.5 Concluding remarks -- 2.4 Inverse problems related to a local heterogeneity -- 3 Local solvability of some inverse problems -- 3.1 Banach�s spaces of analytic functions -- 3.2 Determining coefficients of the lower terms
|
505 |
8 |
|
|a 3.2.1 Determining a coefficient of the lower term3.2.2 Determining an attenuation coefficient -- 3.3 Determining the speed of the sound -- 3.4 A regularization method for solving an inverse problem -- 3.4.1 Theorems related to the system of integro-differential equations -- 3.4.2 Estimates of a solution to the algebraic equations -- 3.4.3 Convergence the approximate solution to the exact one -- 4 Inverse problems with single measurements -- 4.1 Determining coefficient of the lowest term -- 4.1.1 Statement of the problem and stability estimates
|
505 |
8 |
|
|a 4.1.2 Proof of the stability theorems4.1.3 Proof of Lemma 4.1.3 -- 4.1.4 Proof of Lemma 4.1.4 -- 4.2 Determining coefficients under first derivatives -- 4.3 Determining the speed of sound in the wave equation -- 4.3.1 Formulation of the problem and a stability estimate of the solution -- 4.3.2 Proof of Theorem 4.3.1 -- 4.3.3 Proof of Lemma 4.3.5 -- 4.3.4 Proof of Lemma 4.3.6 -- 4.3.5 Proof of the inequality (4.3.24) -- 4.4 Case of a point source -- 4.4.1 Formulations of the problem and results -- 4.4.2 Proofs of the stability theorems
|
505 |
8 |
|
|a 4.4.3 Properties of a solution to problem (4.4.1)4.4.4 Proof of Lemma 4.4.3 -- 4.4.5 Proof of Lemma 4.4.4 -- 5 Stability estimates related to inverse problems for the transport equation -- 5.1 The problem of determining the relaxation and a density of inner sources -- 5.1.1 Statement of basic and auxiliary problems -- 5.1.2 The basic results -- 5.1.3 Proof of Theorem 5.1.1 -- 5.1.4 Proof of the auxiliary lemmas -- 5.2 A stability estimate in the problem of determining the dispersion index and relaxation in 2D -- 5.2.1 Statement of the problem and the basic results
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Inverse problems (Differential equations)
|x Numerical solutions.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
6 |
|a Problèmes inverses (Équations différentielles)
|x Solutions numériques.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
7 |
|a Inverse problems (Differential equations)
|x Numerical solutions
|2 fast
|
650 |
|
7 |
|a Mathematical physics
|2 fast
|
758 |
|
|
|i has work:
|a Investigation methods for inverse problems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH7fYQvygMfrwcttRd9kXd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Romanov, V.G.
|t Investigation methods for inverse problems.
|d Utrecht : VSP, 2002
|h xii, 280 pages ; 25 cm.
|k Inverse and ill-posed problems series
|z 9789067643610
|w (DLC) 2002512842
|w (OCoLC)50053010
|
830 |
|
0 |
|a Inverse and ill-posed problems series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3049581
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3049581
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11008961
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis13829276
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10853164
|
994 |
|
|
|a 92
|b IZTAP
|