|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn903961980 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150202t19921992caua ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCQ
|d OCLCF
|d OCLCO
|d EBLCP
|d IDEBK
|d HEBIS
|d DEBSZ
|d OCLCO
|d DEBBG
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 898769103
|
020 |
|
|
|a 9781483257983
|q (e-book)
|
020 |
|
|
|a 1483257983
|q (e-book)
|
020 |
|
|
|z 9780124605107
|
029 |
1 |
|
|a AU@
|b 000056072274
|
029 |
1 |
|
|a DEBBG
|b BV042988188
|
029 |
1 |
|
|a DEBBG
|b BV043616879
|
029 |
1 |
|
|a DEBSZ
|b 431886032
|
029 |
1 |
|
|a DEBSZ
|b 449479307
|
035 |
|
|
|a (OCoLC)903961980
|z (OCoLC)898769103
|
050 |
|
4 |
|a QA448.D38
|b .M382 1992eb
|
082 |
0 |
4 |
|a 516/.15/0285
|2 20
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Mathematical methods in computer aided geometric design II /
|c edited by Tom Lyche, Larry L. Schumaker.
|
250 |
|
|
|a United Kingdom edition.
|
264 |
|
1 |
|a San Diego, California ;
|a London, England :
|b Academic Press, Inc.,
|c 1992.
|
264 |
|
4 |
|c ©1992
|
300 |
|
|
|a 1 online resource (649 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Mathematical Methods in Computer Aided Geometric Design II; Copyright Page; Table of Contents; PREFACE; PARTICIPANTS; Chapter 1. Symmetrizing Multiaffine Polynomials; 1. Introduction and Motivation; 2. Cubics; 3. Quartics, Quintics, and Sextics; 4. Observations on Conversion to B-spline Form; 5. Open Questions; References; Chapter 2. Norm Estimates for Inverses of Distance Matrices; 1. Introduction; 2. The Univariate Case for the Euclidean Norm; 3. The Multivariate Case for the Euclidean Norm; 4. Fourier Transforms and Bessel Transforms.
|
505 |
8 |
|
|a 5. The Least Upper Bound for Subsets of the Integer GridReferences; Chapter 3. Numerical Treatment of Surface-Surface Intersection and Contouring; 1. Introduction; 2. Lattice Evaluation(2D Grid-Methods); 3. Marching Based on Davidenko's Differential Equation; 4. Marching Based on Taylor Expansion; 5. Conclusion and Future Extensions; References; Chapter 4. Modeling Closed Surfaces:A Comparison of Existing Methods; 1. Introduction; 2. Subdivision Schemes; 3. Discrete Interpolation; 4. Algebraic Interpolation; 5. TransfiniteInterpolation; 6. Octree and Face Octree Representations.
|
505 |
8 |
|
|a 7. Discussion of These Modeling SchemesReferences; Chapter 5. A New Characterization of PlaneElastica; 1. Introduction; 2. A Characterization of Elástica by their Curvature Function; 3. A Characterizing Representation Theorem; References; Chapter 6. POLynomials, POLar Forms, and InterPOLation; 1. Introduction; 2. Algebraic Definition of Polar Curves; 3. Interpolation; 4. Conclusion and a Few Historical Remarks; Chapter 7. Pyramid Patches ProvidePotential Polynomial Paradigms; 1. Introduction; 2. Linear Independence of Families of Lineal Polynomials; 3. B-patches for Hn(IRs).
|
505 |
8 |
|
|a 4. Other Pyramid Schemes5. B-patches for IIn(IRs); 6. Degree Raising, Conversion and Subdivision for B-patches; References; Chapter 8. Implicitizing Rational Surfaces with Base Points by Applying Perturbations and the Factors of Zero Theorem; 1. Introduction; 2. Mathematical Preliminaries; 3. The Factors of Zero Theorem; 4. Implicitization with Base Points Using the Dixon Resultant; 5. An Implicitization Example; 6. Conclusion and Open Problems; References; Chapter 9. Wavelets and Multiscale Interpolation; 1. Introduction; 2. Wavelets and MultiresolutionAnalysis.
|
505 |
8 |
|
|a 3. Fundamental Scaling Functions4. Symmetric and Compactly Supported Scaling Functions; 5. Subdivision Schemes; 6. Regularity; References; Chapter 10. Decomposition of Splines; 1. Introduction; 2. Decomposition; 3. Decomposing Splines; 4. Box Spline Decomposition; 5. Data Reduction by Decomposition; References; Chapter 11. A Curve Intersection Algorithm with Processing of Singular Cases: Introductionof a CHpping Technique; 1. Introduction; 2. Clipping; 3. Singular Cases; 4. Examples; 5. Extension to Surfaces; 6. Conclusion; References.
|
520 |
|
|
|a Mathematical Methods in Computer Aided Geometric Design II.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry
|x Data processing
|v Congresses.
|
650 |
|
6 |
|a Géométrie
|x Informatique
|v Congrès.
|
650 |
|
7 |
|a Geometry
|x Data processing
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
700 |
1 |
|
|a Lyche, Tom,
|e editor.
|
700 |
1 |
|
|a Schumaker, Larry L.,
|e editor.
|
758 |
|
|
|i has work:
|a Mathematical methods in computer aided geometric design II (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFtgQXTTtv6GRxmPHVw7gX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Mathematical methods in computer aided geometric design II.
|b United Kingdom edition.
|d San Diego, California ; London, England : Academic Press, Inc., ©1992
|h xvii, 626 pages
|z 9780124605107
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1901722
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1901722
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11008466
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis30394786
|
994 |
|
|
|a 92
|b IZTAP
|