R High Performance Programming.
With the increasing use of information in all areas of business and science, R provides an easy and powerful way to analyze and process the vast amounts of data involved. It is one of the most popular tools today for faster data exploration, statistical analysis, and statistical modeling and can gen...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Packt Publishing,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding R's Performance
- Why Are R Programs Sometimes Slow?; Three constraints on computing performance
- CPU, RAM, and disk I/O; R is interpreted on the fly; R is single-threaded; R requires all data to be loaded into memory; Algorithm design affects time and space complexity; Summary; Chapter 2: Profiling
- Measuring Code's Performance; Measuring the total execution time; Measuring execution time with system.time(); Repeating time measurements with rbenchmark
- Measuring distribution of execution time with microbenchmarkProfiling the execution time; Profiling a function with Rprof(); The profiling results; Profiling the memory utilization; Monitoring memory utilization, CPU utilization, and disk I/O using OS tools; Identifying and resolving bottlenecks; Summary; Chapter 3: Simple Tweaks to Make R Run Faster; Vectorization; Use of built-in functions; Preallocating memory; Use of simpler data structures; Use of hash tables for frequent lookups on large data; Seek fast alternative packages in CRAN; Summary
- Chapter 4: Using Compiled Code for Greater SpeedCompiling R code before execution; Compiling functions; Just-in-time (JIT) compilation of R code; Using compiled languages in R; Prerequisites; Including compiled code inline; Calling external compiled code; Considerations for using compiled code; The R APIs; R data types versus native data types; Creating R objects and garbage collection; Allocating memory for non-R objects; Summary; Chapter 5: Using GPUs to Run R Even Faster; General purpose computing on GPUs; R and GPUs; Installing gputools; Fast statistical modeling in R with gputools
- Data parallelism versus task parallelismImplementing data parallel algorithms; Implementing task parallel algorithms; Running the same task on workers in a cluster; Running different tasks on workers in a cluster; Executing tasks in parallel on a cluster of computers; Shared memory versus distributed memory parallelism; Optimizing parallel performance; Summary; Chapter 9: Offloading Data Processing to Database Systems; Extracting data into R versus processing data in a database; Preprocessing data in a relational database using SQL; Converting R expressions into SQL; Using dplyr