Cargando…

R High Performance Programming.

With the increasing use of information in all areas of business and science, R provides an easy and powerful way to analyze and process the vast amounts of data involved. It is one of the most popular tools today for faster data exploration, statistical analysis, and statistical modeling and can gen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lim, Aloysius
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2015.
Temas:
R.
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn902836197
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 150206s2015 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d DEBBG  |d CHVBK  |d OCLCQ  |d FEM  |d IDB  |d ZCU  |d OCLCQ  |d MERUC  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d SGP  |d OCLCQ 
019 |a 968061627  |a 969014193 
020 |a 1322872139  |q (ebk) 
020 |a 9781322872131  |q (ebk) 
020 |a 9781783989270 
020 |a 1783989270 
029 1 |a CHNEW  |b 000890271 
029 1 |a CHVBK  |b 374489882 
029 1 |a DEBBG  |b BV043617299 
035 |a (OCoLC)902836197  |z (OCoLC)968061627  |z (OCoLC)969014193 
037 |a 718495  |b MIL 
050 4 |a T55.4-60.8 
082 0 4 |a 519.502855133 
049 |a UAMI 
100 1 |a Lim, Aloysius. 
245 1 0 |a R High Performance Programming. 
260 |b Packt Publishing,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Print version record. 
520 |a With the increasing use of information in all areas of business and science, R provides an easy and powerful way to analyze and process the vast amounts of data involved. It is one of the most popular tools today for faster data exploration, statistical analysis, and statistical modeling and can generate useful insights and discoveries from large amounts of data. Through this practical and varied guide, you will become equipped to solve a range of performance problems in R programming. You will learn how to profile and benchmark R programs, identify bottlenecks, assess and identify performance limitations from the CPU, identify memory or disk input/output constraints, and optimize the computational speed of your R programs using great tricks, such as vectorizing computations. You will then move on to more advanced techniques, such as compiling code and tapping into the computing power of GPUs, optimizing memory consumption, and handling larger-than-memory data sets using disk-based memory and chunking. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding R's Performance -- Why Are R Programs Sometimes Slow?; Three constraints on computing performance -- CPU, RAM, and disk I/O; R is interpreted on the fly; R is single-threaded; R requires all data to be loaded into memory; Algorithm design affects time and space complexity; Summary; Chapter 2: Profiling -- Measuring Code's Performance; Measuring the total execution time; Measuring execution time with system.time(); Repeating time measurements with rbenchmark 
505 8 |a Measuring distribution of execution time with microbenchmarkProfiling the execution time; Profiling a function with Rprof(); The profiling results; Profiling the memory utilization; Monitoring memory utilization, CPU utilization, and disk I/O using OS tools; Identifying and resolving bottlenecks; Summary; Chapter 3: Simple Tweaks to Make R Run Faster; Vectorization; Use of built-in functions; Preallocating memory; Use of simpler data structures; Use of hash tables for frequent lookups on large data; Seek fast alternative packages in CRAN; Summary 
505 8 |a Chapter 4: Using Compiled Code for Greater SpeedCompiling R code before execution; Compiling functions; Just-in-time (JIT) compilation of R code; Using compiled languages in R; Prerequisites; Including compiled code inline; Calling external compiled code; Considerations for using compiled code; The R APIs; R data types versus native data types; Creating R objects and garbage collection; Allocating memory for non-R objects; Summary; Chapter 5: Using GPUs to Run R Even Faster; General purpose computing on GPUs; R and GPUs; Installing gputools; Fast statistical modeling in R with gputools 
505 8 |a Data parallelism versus task parallelismImplementing data parallel algorithms; Implementing task parallel algorithms; Running the same task on workers in a cluster; Running different tasks on workers in a cluster; Executing tasks in parallel on a cluster of computers; Shared memory versus distributed memory parallelism; Optimizing parallel performance; Summary; Chapter 9: Offloading Data Processing to Database Systems; Extracting data into R versus processing data in a database; Preprocessing data in a relational database using SQL; Converting R expressions into SQL; Using dplyr 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a R. 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Lim, Aloysius. R High Performance Programming 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1935722  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1935722 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30566956 
994 |a 92  |b IZTAP