Cargando…

Regularization and Bayesian methods for inverse problems in signal and image processing /

The focus of this book is on "ill-posed inverseproblems". These problems cannot be solved only on the basisof observed data. The building of solutions involves therecognition of other pieces of a priori information. Thesesolutions are then specific to the pieces of information taken intoac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Giovannelli, Jean-François (Editor ), Idier, Jérôme
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE ; Wiley, 2015.
Colección:Digital signal and image processing series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn902804366
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 150205s2015 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d DG1  |d IDEBK  |d CDX  |d E7B  |d OCLCF  |d YDXCP  |d DEBSZ  |d OCLCO  |d COO  |d DEBBG  |d K6U  |d IDB  |d COCUF  |d DG1  |d CCO  |d LIP  |d PIFFA  |d FVL  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d BUF  |d OCLCQ  |d STF  |d ICG  |d INT  |d VT2  |d RECBK  |d EBLCP  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 904961686  |a 935245101  |a 961695902  |a 962723306  |a 992908314  |a 1126130608  |a 1228621401 
020 |a 9781118827079  |q (electronic bk.) 
020 |a 1118827074  |q (electronic bk.) 
020 |a 9781118827253  |q (electronic bk.) 
020 |a 1118827252  |q (electronic bk.) 
020 |a 1848216378 
020 |a 9781848216372 
020 |a 9781322950129 
020 |a 1322950121 
020 |z 9781848216372 
024 8 |a 99962247141 
029 1 |a AU@  |b 000056065411 
029 1 |a CHBIS  |b 010442375 
029 1 |a CHNEW  |b 000943954 
029 1 |a CHVBK  |b 480241848 
029 1 |a DEBBG  |b BV042990674 
029 1 |a DEBBG  |b BV043397497 
029 1 |a DEBBG  |b BV044072268 
029 1 |a DEBSZ  |b 431872392 
029 1 |a DEBSZ  |b 475038673 
029 1 |a DEBSZ  |b 485055481 
035 |a (OCoLC)902804366  |z (OCoLC)904961686  |z (OCoLC)935245101  |z (OCoLC)961695902  |z (OCoLC)962723306  |z (OCoLC)992908314  |z (OCoLC)1126130608  |z (OCoLC)1228621401 
050 4 |a QA371 
072 7 |a MAT  |x 007000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.35  |2 23 
049 |a UAMI 
245 0 0 |a Regularization and Bayesian methods for inverse problems in signal and image processing /  |c edited by Jean-François Giovannelli, Jérôme Idier. 
264 1 |a London :  |b ISTE ;  |a Hoboken, NJ :  |b Wiley,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Digital signal and image processing series 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed February 10, 2015). 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; I.1. Bibliography; 1: 3D Reconstruction in X-ray Tomography: Approach Example for Clinical Data Processing; 1.1. Introduction; 1.2. Problem statement; 1.2.1. Data formation models; 1.2.2. Estimators; 1.2.3. Algorithms; 1.3. Method; 1.3.1. Data formation models; 1.3.2. Estimator; 1.3.3. Minimization method; 1.3.3.1. Algorithm selection; 1.3.3.2. Minimization procedure; 1.3.4. Implementation of the reconstruction procedure; 1.4. Results; 1.4.1. Comparison of minimization algorithms; 1.4.2. Using a region of interest in reconstruction. 
505 8 |a 1.4.3. Consideration of the polyenergetic character of the X-ray source1.4.3.1. Simulated data in 2D; 1.4.3.2. Real data in 3D; 1.5. Conclusion; 1.6. Acknowledgments; 1.7. Bibliography; 2: Analysis of Force-Volume Images in Atomic Force Microscopy Using Sparse Approximation; 2.1. Introduction; 2.2. Atomic force microscopy; 2.2.1. Biological cell characterization; 2.2.2. AFM modalities; 2.2.2.1. Isoforce and isodistance images; 2.2.2.2. Force spectroscopy; 2.2.2.3. Force-volume imaging; 2.2.3. Physical piecewise models; 2.2.3.1. Approach phase models; 2.2.3.2. Retraction phase models. 
505 8 |a 2.3. Data processing in AFM spectroscopy2.3.1. Objectives and methodology in signal processing; 2.3.1.1. Detection of the regions of interest; 2.3.1.2. Parametric model fitting; 2.3.2. Segmentation of a force curve by sparse approximation; 2.3.2.1. Detecting jumps in a signal; 2.3.2.2. Joint detection of discontinuities at different orders; 2.3.2.3. Scalar and vector variable selection; 2.4. Sparse approximation algorithms; 2.4.1. Minimization of a mixed l2-l0 criterion; 2.4.2. Dedicated algorithms; 2.4.3. Joint detection of discontinuities; 2.4.3.1. Construction of the dictionary. 
505 8 |a 2.4.3.2. Selection of scalar variables2.4.3.3. Selection of vector variables; 2.5. Real data processing; 2.5.1. Segmentation of a retraction curve: comparison of strategies; 2.5.2. Retraction curve processing; 2.5.3. Force-volume image processing in the approach phase; 2.6. Conclusion; 2.7. Bibliography; 3: Polarimetric Image Restoration by Non-local Means; 3.1. Introduction; 3.2. Light polarization and the Stokes-Mueller formalism; 3.3. Estimation of the Stokes vectors; 3.3.1. Estimation of the Stokes vector in a pixel; 3.3.1.1. Problem formulation. 
520 |a The focus of this book is on "ill-posed inverseproblems". These problems cannot be solved only on the basisof observed data. The building of solutions involves therecognition of other pieces of a priori information. Thesesolutions are then specific to the pieces of information taken intoaccount. Clarifying and taking these pieces of information intoaccount is necessary for grasping the domain of validity and thefield of application for the solutions built. For too long, the interest in these problems has remained very limited in thesignal-image community. However, the community has since recog 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Inverse problems (Differential equations) 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Signal processing  |x Mathematics. 
650 0 |a Image processing  |x Mathematics. 
650 6 |a Problèmes inverses (Équations différentielles) 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Traitement du signal  |x Mathématiques. 
650 6 |a Traitement d'images  |x Mathématiques. 
650 7 |a MATHEMATICS  |x Differential Equations.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Image processing  |x Mathematics  |2 fast 
650 7 |a Inverse problems (Differential equations)  |2 fast 
650 7 |a Signal processing  |x Mathematics  |2 fast 
700 1 |a Giovannelli, Jean-François,  |e editor. 
700 1 |a Idier, Jérôme. 
758 |i has work:  |a Regularization and Bayesian methods for inverse problems in signal and image processing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfBbP96RV4g89vxRM3pvb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Regularization and bayesian methods for inverse problems in signal and image processing.  |d London, [England] ; Hoboken, New Jersey : ISTE Limited : John Wiley & Sons, ©2015 ken, New Jersey : John Wiley & Sons, ©2015  |h 299 pages  |k Digital signal and image processing series.  |z 9781848216372 
830 0 |a Digital signal and image processing series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895101  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27098639 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27099033 
938 |a Coutts Information Services  |b COUT  |n 30970411 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4038998 
938 |a ebrary  |b EBRY  |n ebr11017945 
938 |a EBSCOhost  |b EBSC  |n 947952 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30970411 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00596270 
938 |a YBP Library Services  |b YANK  |n 12798568 
938 |a YBP Library Services  |b YANK  |n 12283170 
938 |a YBP Library Services  |b YANK  |n 11072774 
994 |a 92  |b IZTAP