Cargando…

Matrix calculus /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bodewig, Ewald (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : North-Holland Publishing Company, 1959.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn900888538
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 150109t19591959ne a o 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d YDXCP  |d DEBSZ  |d OCLCF  |d OCLCQ  |d MERUC  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 898422304  |a 900212601 
020 |a 9781483274980  |q (e-book) 
020 |a 1483274985  |q (e-book) 
020 |z 9781483232140 
029 1 |a AU@  |b 000069440299 
029 1 |a DEBBG  |b BV043615535 
029 1 |a DEBSZ  |b 431867003 
029 1 |a AU@  |b 000056063664 
035 |a (OCoLC)900888538  |z (OCoLC)898422304  |z (OCoLC)900212601 
050 4 |a QA263  |b .B56 1959eb 
082 0 4 |a 512.896 
049 |a UAMI 
100 1 |a Bodewig, Ewald,  |e author. 
245 1 0 |a Matrix calculus /  |c by E. Bodewig. 
264 1 |a Amsterdam, Netherlands :  |b North-Holland Publishing Company,  |c 1959. 
264 4 |c ©1959 
300 |a 1 online resource (465 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Dedication; Matrix Calculus; CopyrightPage; Table of Contents; PREFACE; PART I: MATRIX CALCULUS; CHAPTER I. VECTORS; 1.1. EQUATION OF A PLANE; CHAPTER II. MATRICES; CHAPTER 3. FURTHER APPLICATIONS; CHAPTER 4. MEASURES OF THE MAGNITUDE OF A MATRIX; CHAPTER 5. FORMS; CHAPTER 6. EIGENVALUES; 6.1. MODAL-MATRIX, SPECTRAL-MATRIX; 6.2. THE CHARACTERISTIC EQUATION; 6.3. RELATIONS BETWEEN Sp, N, A, [lambda]i; 6.4. EIGENROWS; 6.5. EXTREMUM PROPERTIES OF THE EIGENVALUES; 6.6. BOUNDS FOR THE EIGENVALUES; 6.7. BOUNDS FOR THE DETERMINANT; 6.8. ELEMENTARY DIVISORS; PART II: LINEAR EQUATIONS. 
505 8 |a A. DIRECT METHODSCHAPTER 1. EXACT SOLUTIONS; 1.1. ELIMINATION I; 1.2. ELIMINATION II; CHAPTER 2. APPROXIMATE SOLUTIONS; 2.1. CONDENSATION I. TRIANGULARISATION; 2.2. CONDENSATION II. DIAGONALIZATION; 2 . 3 . THE DECOMPOSITION OF THE MATRIX INTO TWO TRIANGULAR MATRICES; 2.4. CHOICE OF ANOTHER PIVOTAL ELEMENT; 2.5. THE GAUSS-DOOLITTLE PROCESS; 2.6. A METHOD FOR PUNCHED CARDS; 2.7. THE GENERALIZED CONDENSATIONS I AND II; 2.8. AlTKENS TRIPLE PRODUCT; 2.9. ILL-CONDITIONED EQUATIONS; 2.10. NEIGHBOUR SYSTEMS; 2.11. ERRORS AND EXACTNESS OF THE SOLUTION; 2.12. COMPLEX SYSTEMS; B. ITERATIONS METHODS. 
505 8 |a CHAPTER 1. CONDENSATION1.1. THE INVERSE OF A TRIANGULAR MATRIX; CHAPTER 2. FROBENIUS-SCHUR'S RELATION; CHAPTER 3. COMPLETING; CHAPTER 4. THE ADJUGATE; 4 . 1 . THE METHOD OF DETERMINANTS; B. ITERATION METHOD; C. GEODETIC MATRICES; PART IV. EIGEN PROBLEMS; CHAPTER 1. INTRODUCTORY; A. ITERATION METHODS; CHAPTER 2. THE ITERATED VECTORS {Power Method); 2.1. THE DOMINANT EIGENVALUE IS REAL; 2.2. THE DOMINANT EIGENVALUE IS COMPLEX; 2.3. OTHER CASES; 2.4. CRITICISM OF THE POWER METHOD; 2.5. HIGHER EIGENVALUES; 2.6. HIGHER EIGENVALUES ACCORDING TO AITKEN; 2.7. THE LEAST EIGENVALUES; 2.8. the use of frobenius's theorem. 
505 8 |a Chapter 3.3.1. introduction; 3.2. preliminary view; 3.3. development of the iteration methods; chapter 4. iteration i; chapter 5. the characteristic equation of the iteration processes; chapter 6. type of convergence of the iteration methods; chapter 7. convergence theorems; 7.1. schmidt-mises-geiringer; 7.3. iteration ii; 7.4. iteration i; 7.5. geiringer's theorem; 7.6. theorem of stein and rosenberg; 7.7. another theorem of stein-rosenberg; 7.8. aitken's neo-seidelian iteration; chapter 8. the general iteration; chapter 9. methods for automatic machines. 
505 8 |a CHAPTER 10. SPEEDING -- U P CONVERGENCE BY CHANGING MATRIX10.1. CESARl'S METHOD; 10.2. VAN DER CORPUT'S DEVICE; 10.3. THE METHOD OF ELIMINATION; 10.4. JACOBl'S METHOD; CHAPTER 11. THE ITERATED DIRECT METHODS; 11.1. CONVERGENCE OF THE METHOD; CHAPTER 12. METHODS FOR ELECTRONIC COMPUTERS; 12.1. KACMARZ'S PROCEDURE; 12.2. CIMMINO'S PROCEDURE; 12.3. LINEAR EQUATIONS AS MINIMUM CONDITION; 12.4. LINEAR EQUATIONS AS EIGENPROBLEMS; CHAPTER 13. VARIOUS QUESTIONS; 13.1. NORMALIZATION; 13.2. SCALING; 13.3. ANOTHER SCALING; 13.4. A THIRD SCALING; PART IIII: NVERSION OF MATRICES; A. DIRECT METHODS. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices. 
650 6 |a Matrices. 
650 7 |a Matrices  |2 fast 
758 |i has work:  |a Matrix calculus (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFyWmMDJp3Q7wMcqMhcHG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bodewig, Ewald.  |t Matrix calculus.  |b Second revised and enlarged edition.  |d Amsterdam, Netherlands : North-Holland Publishing Company, ©1959  |h xi, 452 pages  |z 9781483232140 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1888531  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1888531 
938 |a ebrary  |b EBRY  |n ebr10999859 
938 |a YBP Library Services  |b YANK  |n 12207611 
994 |a 92  |b IZTAP