|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn900888538 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150109t19591959ne a o 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d YDXCP
|d DEBSZ
|d OCLCF
|d OCLCQ
|d MERUC
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 898422304
|a 900212601
|
020 |
|
|
|a 9781483274980
|q (e-book)
|
020 |
|
|
|a 1483274985
|q (e-book)
|
020 |
|
|
|z 9781483232140
|
029 |
1 |
|
|a AU@
|b 000069440299
|
029 |
1 |
|
|a DEBBG
|b BV043615535
|
029 |
1 |
|
|a DEBSZ
|b 431867003
|
029 |
1 |
|
|a AU@
|b 000056063664
|
035 |
|
|
|a (OCoLC)900888538
|z (OCoLC)898422304
|z (OCoLC)900212601
|
050 |
|
4 |
|a QA263
|b .B56 1959eb
|
082 |
0 |
4 |
|a 512.896
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bodewig, Ewald,
|e author.
|
245 |
1 |
0 |
|a Matrix calculus /
|c by E. Bodewig.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b North-Holland Publishing Company,
|c 1959.
|
264 |
|
4 |
|c ©1959
|
300 |
|
|
|a 1 online resource (465 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Dedication; Matrix Calculus; CopyrightPage; Table of Contents; PREFACE; PART I: MATRIX CALCULUS; CHAPTER I. VECTORS; 1.1. EQUATION OF A PLANE; CHAPTER II. MATRICES; CHAPTER 3. FURTHER APPLICATIONS; CHAPTER 4. MEASURES OF THE MAGNITUDE OF A MATRIX; CHAPTER 5. FORMS; CHAPTER 6. EIGENVALUES; 6.1. MODAL-MATRIX, SPECTRAL-MATRIX; 6.2. THE CHARACTERISTIC EQUATION; 6.3. RELATIONS BETWEEN Sp, N, A, [lambda]i; 6.4. EIGENROWS; 6.5. EXTREMUM PROPERTIES OF THE EIGENVALUES; 6.6. BOUNDS FOR THE EIGENVALUES; 6.7. BOUNDS FOR THE DETERMINANT; 6.8. ELEMENTARY DIVISORS; PART II: LINEAR EQUATIONS.
|
505 |
8 |
|
|a A. DIRECT METHODSCHAPTER 1. EXACT SOLUTIONS; 1.1. ELIMINATION I; 1.2. ELIMINATION II; CHAPTER 2. APPROXIMATE SOLUTIONS; 2.1. CONDENSATION I. TRIANGULARISATION; 2.2. CONDENSATION II. DIAGONALIZATION; 2 . 3 . THE DECOMPOSITION OF THE MATRIX INTO TWO TRIANGULAR MATRICES; 2.4. CHOICE OF ANOTHER PIVOTAL ELEMENT; 2.5. THE GAUSS-DOOLITTLE PROCESS; 2.6. A METHOD FOR PUNCHED CARDS; 2.7. THE GENERALIZED CONDENSATIONS I AND II; 2.8. AlTKENS TRIPLE PRODUCT; 2.9. ILL-CONDITIONED EQUATIONS; 2.10. NEIGHBOUR SYSTEMS; 2.11. ERRORS AND EXACTNESS OF THE SOLUTION; 2.12. COMPLEX SYSTEMS; B. ITERATIONS METHODS.
|
505 |
8 |
|
|a CHAPTER 1. CONDENSATION1.1. THE INVERSE OF A TRIANGULAR MATRIX; CHAPTER 2. FROBENIUS-SCHUR'S RELATION; CHAPTER 3. COMPLETING; CHAPTER 4. THE ADJUGATE; 4 . 1 . THE METHOD OF DETERMINANTS; B. ITERATION METHOD; C. GEODETIC MATRICES; PART IV. EIGEN PROBLEMS; CHAPTER 1. INTRODUCTORY; A. ITERATION METHODS; CHAPTER 2. THE ITERATED VECTORS {Power Method); 2.1. THE DOMINANT EIGENVALUE IS REAL; 2.2. THE DOMINANT EIGENVALUE IS COMPLEX; 2.3. OTHER CASES; 2.4. CRITICISM OF THE POWER METHOD; 2.5. HIGHER EIGENVALUES; 2.6. HIGHER EIGENVALUES ACCORDING TO AITKEN; 2.7. THE LEAST EIGENVALUES; 2.8. the use of frobenius's theorem.
|
505 |
8 |
|
|a Chapter 3.3.1. introduction; 3.2. preliminary view; 3.3. development of the iteration methods; chapter 4. iteration i; chapter 5. the characteristic equation of the iteration processes; chapter 6. type of convergence of the iteration methods; chapter 7. convergence theorems; 7.1. schmidt-mises-geiringer; 7.3. iteration ii; 7.4. iteration i; 7.5. geiringer's theorem; 7.6. theorem of stein and rosenberg; 7.7. another theorem of stein-rosenberg; 7.8. aitken's neo-seidelian iteration; chapter 8. the general iteration; chapter 9. methods for automatic machines.
|
505 |
8 |
|
|a CHAPTER 10. SPEEDING -- U P CONVERGENCE BY CHANGING MATRIX10.1. CESARl'S METHOD; 10.2. VAN DER CORPUT'S DEVICE; 10.3. THE METHOD OF ELIMINATION; 10.4. JACOBl'S METHOD; CHAPTER 11. THE ITERATED DIRECT METHODS; 11.1. CONVERGENCE OF THE METHOD; CHAPTER 12. METHODS FOR ELECTRONIC COMPUTERS; 12.1. KACMARZ'S PROCEDURE; 12.2. CIMMINO'S PROCEDURE; 12.3. LINEAR EQUATIONS AS MINIMUM CONDITION; 12.4. LINEAR EQUATIONS AS EIGENPROBLEMS; CHAPTER 13. VARIOUS QUESTIONS; 13.1. NORMALIZATION; 13.2. SCALING; 13.3. ANOTHER SCALING; 13.4. A THIRD SCALING; PART IIII: NVERSION OF MATRICES; A. DIRECT METHODS.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Matrices.
|
650 |
|
6 |
|a Matrices.
|
650 |
|
7 |
|a Matrices
|2 fast
|
758 |
|
|
|i has work:
|a Matrix calculus (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFyWmMDJp3Q7wMcqMhcHG3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bodewig, Ewald.
|t Matrix calculus.
|b Second revised and enlarged edition.
|d Amsterdam, Netherlands : North-Holland Publishing Company, ©1959
|h xi, 452 pages
|z 9781483232140
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1888531
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1888531
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10999859
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12207611
|
994 |
|
|
|a 92
|b IZTAP
|