Cargando…

R for data science /

R is a powerful, open source, functional programming language. It can be used for a wide range of programming tasks and is best suited to produce data and visual analytics through customizable scripts and commands. The purpose of the book is to explore the core topics that data scientists are intere...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Toomey, Dan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn900882999
003 OCoLC
005 20240329122006.0
006 m o d
007 cr unu||||||||
008 150128s2014 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d EBLCP  |d N$T  |d COO  |d DEBBG  |d OCLCF  |d FEM  |d AGLDB  |d ICA  |d DEBSZ  |d ZCU  |d XFH  |d OCLCQ  |d MERUC  |d OCLCQ  |d TEFOD  |d D6H  |d VTS  |d CEF  |d ICG  |d AU@  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 899134659  |a 968112758  |a 969014568  |a 994480135 
020 |a 132256535X  |q (electronic bk.) 
020 |a 9781322565354  |q (electronic bk.) 
020 |a 9781784392659  |q (electronic bk.) 
020 |a 1784392650  |q (electronic bk.) 
020 |z 1784390860 
020 |z 9781784390860 
029 1 |a CHNEW  |b 000889938 
029 1 |a CHVBK  |b 374486557 
029 1 |a DEBBG  |b BV042490997 
029 1 |a DEBBG  |b BV043617019 
029 1 |a DEBSZ  |b 434841749 
029 1 |a DEBSZ  |b 484737716 
029 1 |a NLGGC  |b 390755818 
035 |a (OCoLC)900882999  |z (OCoLC)899134659  |z (OCoLC)968112758  |z (OCoLC)969014568  |z (OCoLC)994480135 
037 |a CL0500000540  |b Safari Books Online 
037 |a 9AFE317E-D694-4169-8F50-DC524EF022D6  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.50285/5133 
049 |a UAMI 
100 1 |a Toomey, Dan,  |e author. 
245 1 0 |a R for data science /  |c Dan Toomey. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
500 |a "Learn and explore the fundamentals of data science with R." 
500 |a Includes index. 
588 0 |a Online resource; title from cover (Safari, viewed Janurary 22, 2014). 
520 |a R is a powerful, open source, functional programming language. It can be used for a wide range of programming tasks and is best suited to produce data and visual analytics through customizable scripts and commands. The purpose of the book is to explore the core topics that data scientists are interested in. This book draws from a wide variety of data sources and evaluates this data using existing publicly available R functions and packages. In many cases, the resultant data can be displayed in a graphical form that is more intuitively understood. You will also learn about the often needed and frequently used analysis techniques in the industry. By the end of the book, you will know how to go about adopting a range of data science techniques with R. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Data Mining Patterns; Cluster analysis; K-means clustering; Usage; Example; K-medoids clustering; Usage; Example; Hierarchical clustering; Usage; Example; Expectation-maximization; Usage; List of model names; Example; Density estimation; Usage; Example; Anomaly detection; Show outliers; Example; Example; Another anomaly detection example; Calculating anomalies; Usage; Example 1; Example 2; Association rules; Mine for associations; Usage; Example; Questions; Summary. 
505 8 |a Chapter 2: Data Mining SequencesPatterns; Eclat; Usage; Using eclat to find similarities in adult behavior; Finding frequent items in a dataset; An example focusing on highest frequency; arulesNBMiner; Usage; Mining the Agrawal data for frequent sets; Apriori; Usage; Evaluating associations in a shopping basket; Determining sequences using TraMineR; Usage; Determining sequences in training and careers; Similarities in the sequence; Sequence metrics; Usage; Example; Questions; Summary; Chapter 3: Text Mining; Packages; Text processing; Example; Creating a corpus; Text clusters; Word graphics. 
505 8 |a Analyzing the XML textQuestions; Summary; Chapter 4: Data Analysis -- Regression Analysis; Packages; Simple regression; Multiple regression; Multivariate regression analysis; Robust regression; Questions; Summary; Chapter 5: Data Analysis -- Correlation; Packages; Correlation; Example; Visualizing correlations; Covariance; Pearson correlation; Polychoric correlation; Tetrachoric correlation; A heterogeneous correlation matrix; Partial correlation; Questions; Summary; Chapter 6: Data Analysis -- Clustering; Packages; K-means clustering; Example; Optimal number of clusters; Medoids clusters. 
505 8 |a The cascadeKM functionSelecting clusters based on Bayesian information; Affinity propagation clustering; Gap statistic to estimate the number of clusters; Hierarchical clustering; Questions; Summary; Chapter 7: Data Visualization -- R Graphics; Packages; Interactive graphics; The latticist package; Bivariate binning display; Mapping; Plotting points on a map; Plotting points on a world map; Google Maps; The ggplot2 package; Questions; Summary; Chapter 8: Data Visualization -- Plotting; Packages; Scatter plots; Regression line; A lowess line; scatterplot; Scatterplot matrices. 
505 8 |a Splom -- display matrix datacpairs -- plot matrix data; Density scatter plots; Bar charts and plots; Bar plot; Usage; Bar chart; ggplot2; Word cloud; Questions; Summary; Chapter 9: Data Visualization -- 3D; Packages; Generating 3D graphics; Lattice Cloud -- 3D scatterplot; scatterplot3d; scatter3d; cloud3d; RgoogleMaps; vrmlgenbar3D; Big Data; pbdR; bigmemory; Research areas; Rcpp; parallel; microbenchmark; pqR; SAP integration; roxygen2; bioconductor; swirl; pipes; Questions; Summary; Chapter 10: Machine Learning in Action; Packages; Dataset; Data partitioning; Model; Linear model; Prediction. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a R (Computer program language) 
650 0 |a Open source software. 
650 6 |a R (Langage de programmation) 
650 6 |a Logiciels libres. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Open source software  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
758 |i has work:  |a R for data science (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFR4wqmY9qXr7xqkHdjh6q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Toomey, Dan.  |t R for data science : learn and explore the fundamentals of data science with R.  |d Birmingham, England : Packt Publishing, ©2014  |h xxv, 389 pages  |k Community experience distilled.  |z 9781784390860 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1910211  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1910211 
938 |a EBSCOhost  |b EBSC  |n 933765 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30395555 
994 |a 92  |b IZTAP