Cargando…

Handbook of Functional Equations : Stability Theory /

This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rassias, Themistocles M., 1951- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint : Springer, 2014.
Colección:Springer optimization and its applications ; 96.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn900364149
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 141121s2014 nyu o 000 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d OCLCO  |d OCLCF  |d UA@  |d EBLCP  |d OCLCQ  |d VT2  |d NJR  |d DEBBG  |d I9W  |d OCLCQ  |d REB  |d INT  |d OCLCQ  |d WYU  |d OCLCQ  |d FIE  |d AU@  |d UKAHL  |d OCLCQ  |d DCT  |d ERF  |d OCLCQ  |d OCLCO  |d UCW  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 1005814878  |a 1011953391  |a 1022038579  |a 1026432925  |a 1048160314  |a 1088454948  |a 1110834920  |a 1112592980  |a 1112867156  |a 1160101190  |a 1162774338 
020 |a 9781493912865 
020 |a 1493912860 
020 |a 9781493912858  |q (print) 
020 |a 1493912852  |q (print) 
024 7 |a 10.1007/978-1-4939-1286-5  |2 doi 
029 1 |a CHNEW  |b 000890758 
029 1 |a DEBBG  |b BV043618719 
029 1 |a DKDLA  |b 820120-katalog:000685257 
029 1 |a CHNEW  |b 001083441 
029 1 |a DKDLA  |b 820120-katalog:999893208205765 
035 |a (OCoLC)900364149  |z (OCoLC)1005814878  |z (OCoLC)1011953391  |z (OCoLC)1022038579  |z (OCoLC)1026432925  |z (OCoLC)1048160314  |z (OCoLC)1088454948  |z (OCoLC)1110834920  |z (OCoLC)1112592980  |z (OCoLC)1112867156  |z (OCoLC)1160101190  |z (OCoLC)1162774338 
037 |b Springer 
050 4 |a QA431 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.625  |2 23 
082 0 4 |a 515.75  |2 23 
049 |a UAMI 
245 0 0 |a Handbook of Functional Equations :  |b Stability Theory /  |c edited by Themistocles M. Rassias. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint :  |b Springer,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 96 
520 |a This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S.M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D.H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy-Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D'Alembert's functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory. 
505 0 |a On Some Functional Equations (M. Adam, S. Czerwik, K. Krol) -- Remarks on Stability of the Equation of Homomorphism for Square Symmetric Groupoids (A. Bahyrycz, J. Brzdek) -- On Stability of the Linear and Polynomial Functional Equations in Single Variable (J. Brzdek, M. Piszczek) -- Selections of Set-Valued Maps Satisfying Some Inclusions and the Hyers-Ulam Stability (J. Brzdek, M. Piszczek) -- Generalized Ulam-Hyers Stability Results: A Fixed Point Approach (L. Caradiu) -- On a Wake Version of Hyers-Ulam Stability Theorem in Restricted Domain (J. Chung, J. Chang) -- On the Stability of Drygas Functional Equation on Amenable Semigroups (E. Elqorachi, Y. Manar, Th. M. Rassias) -- Stability of Quadratic and Drygas Functional Equations, with an Application for Solving an Alternative Quadratic Equation (G.L. Forti) -- A Functional Equation Having Monomials and its Stability (M.E. Gorgji, H. Khodaei, Th. M. Rassias) -- Some Functional Equations Related to the Characterizations of Information Measures and their Stability (E. Gselmann, G. Maksa) -- Approximate Cauchy-Jensen Type Mappings in Quasi-? Normed Spaces (H.-M. Kim, K.-W. Jun, E. Son) -- An AQCQ-Functional Equation in Matrix Paranormed Spaces (J.R. Lee, C. Park, Th. M. Rassias, D.Y. Shin) -- On the GEneralized Hyers-Ulam Stability of the Pexider Equation on Restricted Domains (Y. Manar, E. Elqorachi, Th. M. Rassias) -- Hyers-Ulam Stability of Some Differential Equations and Differential Operators (D. Popa, I. Rasa) -- Results and Problems in Ulam Stability of Operational Equations and Inclusions (I.A. Rus) -- Superstability of Generalized Module Left Higher Derivations on a Multi-Banach Module (T.L. Shateri, Z. Afshari) -- D'Alembert's Functional Equation and Superstability Problem in Hypergroups (D. Zeglami, A. Roukbi, Th. M. Rassias). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Functional equations. 
650 0 |a Functional analysis. 
650 0 |a Functions, Special. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical physics. 
650 0 |a Engineering mathematics. 
650 2 |a Mathematics 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Optimization. 
650 2 4 |a Appl. Mathematics/Computational Methods of Engineering. 
650 2 4 |a Special Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 1 4 |a Mathematics. 
650 6 |a Mathématiques. 
650 6 |a Équations fonctionnelles. 
650 6 |a Analyse fonctionnelle. 
650 6 |a Fonctions spéciales. 
650 6 |a Optimisation mathématique. 
650 6 |a Physique mathématique. 
650 6 |a Mathématiques de l'ingénieur. 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Functional analysis  |2 fast 
650 7 |a Functional equations  |2 fast 
650 7 |a Functions, Special  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Mathematical physics  |2 fast 
650 7 |a Mathematics  |2 fast 
700 1 |a Rassias, Themistocles M.,  |d 1951-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PBJpv4wKy8bbtCyX67cRBT3 
776 0 8 |i Printed edition:  |z 9781493912858 
830 0 |a Springer optimization and its applications ;  |v 96.  |x 1931-6828 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1968101  |z Texto completo 
880 0 |6 505-00/(S  |a On Some Functional Equations (M. Adam, S. Czerwik, K. Krol) -- Remarks on Stability of the Equation of Homomorphism for Square Symmetric Groupoids (A. Bahyrycz, J. Brzdek) -- On Stability of the Linear and Polynomial Functional Equations in Single Variable (J. Brzdek, M. Piszczek) -- Selections of Set-Valued Maps Satisfying Some Inclusions and the Hyers-Ulam Stability (J. Brzdek, M. Piszczek) -- Generalized Ulam-Hyers Stability Results: A Fixed Point Approach (L. Caradiu) -- On a Wake Version of Hyers-Ulam Stability Theorem in Restricted Domain (J. Chung, J. Chang) -- On the Stability of Drygas Functional Equation on Amenable Semigroups (E. Elqorachi, Y. Manar, Th. M. Rassias) -- Stability of Quadratic and Drygas Functional Equations, with an Application for Solving an Alternative Quadratic Equation (G.L. Forti) -- A Functional Equation Having Monomials and its Stability (M.E. Gorgji, H. Khodaei, Th. M. Rassias) -- Some Functional Equations Related to the Characterizations of Information Measures and their Stability (E. Gselmann, G. Maksa) -- Approximate Cauchy-Jensen Type Mappings in Quasi-β Normed Spaces (H.-M. Kim, K.-W. Jun, E. Son) -- An AQCQ-Functional Equation in Matrix Paranormed Spaces (J.R. Lee, C. Park, Th. M. Rassias, D.Y. Shin) -- On the GEneralized Hyers-Ulam Stability of the Pexider Equation on Restricted Domains (Y. Manar, E. Elqorachi, Th. M. Rassias) -- Hyers-Ulam Stability of Some Differential Equations and Differential Operators (D. Popa, I. Rasa) -- Results and Problems in Ulam Stability of Operational Equations and Inclusions (I.A. Rus) -- Superstability of Generalized Module Left Higher Derivations on a Multi-Banach Module (T.L. Shateri, Z. Afshari) -- D'Alembert's Functional Equation and Superstability Problem in Hypergroups (D. Zeglami, A. Roukbi, Th. M. Rassias). 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29396746 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1968101 
994 |a 92  |b IZTAP