Cargando…

Spatial and spatio-temporal Bayesian models with R-INLA /

Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a muchneeded, practically oriented & innovative presentation of the combination ofBayesian methodology and spatial statistics. The authors combine an introduction toBayesian theory and methodology with a focus on the spatial and sp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Blangiardo, Marta
Otros Autores: Cameletti, Michela
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : John Wiley and Sons, Inc., 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn900278105
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150114s2015 enk ob 001 0 eng
010 |a  2015001960 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d OCLCF  |d DG1  |d IDEBK  |d E7B  |d N$T  |d YDXCP  |d CDX  |d COO  |d DEBSZ  |d OCLCQ  |d DEBBG  |d EBLCP  |d IDB  |d DG1  |d LIP  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d ICG  |d VT2  |d OCLCQ  |d U3W  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S2H  |d OCLCQ  |d NZHMA  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 961695942  |a 962723434  |a 992913562  |a 1055398484  |a 1081246087  |a 1117068632  |a 1148090783  |a 1154367127 
020 |a 9781118950197  |q (epub) 
020 |a 1118950194  |q (epub) 
020 |a 9781118950210  |q (pdf) 
020 |a 1118950216  |q (pdf) 
020 |a 9781118950203  |q (electronic bk.) 
020 |a 1118950208  |q (electronic bk.) 
020 |a 1118326555  |q (cloth) 
020 |a 9781118326558  |q (cloth) 
020 |z 9781118326558  |q (cloth) 
029 1 |a AU@  |b 000060216914 
029 1 |a CHNEW  |b 000891217 
029 1 |a CHNEW  |b 000943906 
029 1 |a CHVBK  |b 480241368 
029 1 |a DEBBG  |b BV042991359 
029 1 |a DEBBG  |b BV043397457 
029 1 |a DEBBG  |b BV043619875 
029 1 |a DEBSZ  |b 449489965 
029 1 |a DEBSZ  |b 453328784 
029 1 |a DEBSZ  |b 485055120 
029 1 |a GBVCP  |b 836347625 
029 1 |a ZWZ  |b 191455369 
029 1 |a AU@  |b 000054011580 
035 |a (OCoLC)900278105  |z (OCoLC)961695942  |z (OCoLC)962723434  |z (OCoLC)992913562  |z (OCoLC)1055398484  |z (OCoLC)1081246087  |z (OCoLC)1117068632  |z (OCoLC)1148090783  |z (OCoLC)1154367127 
037 |a 770070  |b MIL 
042 |a pcc 
050 0 0 |a QA279.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.5/42  |2 23 
049 |a UAMI 
100 1 |a Blangiardo, Marta. 
245 1 0 |a Spatial and spatio-temporal Bayesian models with R-INLA /  |c by Marta Blangiardo and Michela Cameletti. 
264 1 |a Chichester, West Sussex :  |b John Wiley and Sons, Inc.,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a Title Page; Copyright; Table of Contents; Dedication; Preface; Chapter 1: Introduction; 1.1 Why spatial and spatio-temporal statistics?; 1.2 Why do we use Bayesian methods for modeling spatial and spatio-temporal structures?; 1.3 Why INLA?; 1.4 Datasets; References; Chapter 2: Introduction to R; 2.1 The R language; 2.2 R objects; 2.3 Data and session management; 2.4 Packages; 2.5 Programming in R; 2.6 Basic statistical analysis with R; References; Chapter 3: Introduction to Bayesian methods; 3.1 Bayesian philosophy; 3.2 Basic probability elements; 3.3 Bayes theorem. 
505 8 |a 3.4 Prior and posterior distributions3.5 Working with the posterior distribution; 3.6 Choosing the prior distribution; References; Chapter 4: Bayesian computing; 4.1 Monte Carlo integration; 4.2 Monte Carlo method for Bayesian inference; 4.3 Probability distributions and random number generation in R; 4.4 Examples of Monte Carlo simulation; 4.5 Markov chain Monte Carlo methods; 4.6 The integrated nested Laplace approximations algorithm; 4.7 Laplace approximation; 4.8 The R-INLA package; 4.9 How INLA works: step-by-step example; References. 
505 8 |a Chapter 5: Bayesian regression and hierarchical models5.1 Linear regression; 5.2 Nonlinear regression: random walk; 5.3 Generalized linear models; 5.4 Hierarchical models; 5.5 Prediction; 5.6 Model checking and selection; References; Chapter 6: Spatial modeling; 6.1 Areal data -- GMRF; 6.2 Ecological regression; 6.3 Zero-inflated models; 6.4 Geostatistical data; 6.5 The stochastic partial differential equation approach; 6.6 SPDE within R-INLA; 6.7 SPDE toy example with simulated data; 6.8 More advanced operations through the inla.stack function; 6.9 Prior specification for the stationary case. 
505 8 |a 6.10 SPDE for Gaussian response: Swiss rainfall data6.11 SPDE with nonnormal outcome: malaria in the Gambia; 6.12 Prior specification for the nonstationary case; References; Chapter 7: Spatio-temporal models; 7.1 Spatio-temporal disease mapping; 7.2 Spatio-temporal modeling particulate matter concentration; References; Chapter 8: Advanced modeling; 8.1 Bivariate model for spatially misaligned data; 8.2 Semicontinuous model to daily rainfall; 8.3 Spatio-temporal dynamic models; 8.4 Space-time model lowering the time resolution; References; Index; End User License Agreement. 
520 |a Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a muchneeded, practically oriented & innovative presentation of the combination ofBayesian methodology and spatial statistics. The authors combine an introduction toBayesian theory and methodology with a focus on the spatial and spatio­-temporal modelsused within the Bayesian framework and a series of practical examples which allowthe reader to link the statistical theory presented to real data problems. The numerousexamples from the fields of epidemiology, biostatistics and social science all arecoded in the R package R-INLA, which has proven to be a valid alternative to the commonlyused Markov Chain Monte Carlo simulations. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Spatial analysis (Statistics) 
650 0 |a Asymptotic distribution (Probability theory) 
650 0 |a R (Computer program language) 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Analyse spatiale (Statistique) 
650 6 |a Distribution asymptotique (Théorie des probabilités) 
650 6 |a R (Langage de programmation) 
650 7 |a spatial analysis.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Asymptotic distribution (Probability theory)  |2 fast 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Spatial analysis (Statistics)  |2 fast 
700 1 |a Cameletti, Michela. 
758 |i has work:  |a Spatial and spatio temporal bayesian models with R-Inla (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3KHyX76VYKj6VxvfjPpDV  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Blangiardo, Marta.  |t Spatial and spatio-temporal Bayesian models with R-INLA.  |d Chichester, West Sussex : John Wiley and Sons, Inc., 2015  |z 9781118326558  |w (DLC) 2015000696 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=2006109  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28549232 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28504279 
938 |a Coutts Information Services  |b COUT  |n 30500768 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4040118 
938 |a ebrary  |b EBRY  |n ebr11041459 
938 |a EBSCOhost  |b EBSC  |n 985080 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30500768 
938 |a YBP Library Services  |b YANK  |n 12367773 
938 |a YBP Library Services  |b YANK  |n 11764498 
938 |a YBP Library Services  |b YANK  |n 12677793 
994 |a 92  |b IZTAP