Multicomponent reactions : concepts and applications for design and synthesis /
Addressing a dynamic aspect of organic chemistry, this book describes synthetic strategies and applications for multicomponent reactions - including key routes for synthesizing complex molecules. - Illustrates the crucial role and the important utility of multicomponent reactions (MCRs) to organic s...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc.,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Title Page
- Copyright Page
- Contents
- List of Contributors
- Preface
- List of Abbreviations
- Chapter 1 Introduction: Multi-component Strategies
- General Introduction
- 1.1 Basic Concepts
- 1.1.1 Clarifying Terminology: One-Pot, Domino/Cascade, Tandem, and MCRs
- 1.1.2 Using Rational Design to Discover New MCRs
- 1.1.3 Discovering New MCRs with Automated Combinatorial Reaction Finding
- 1.1.4 Computational and Analytical Tools to Study MCRs
- 1.1.5 Diversity-Oriented Synthesis and Biology-Oriented Synthesis
- 1.1.6 Optimization of MCRs
- 1.2 Catalysis in MCRs and Various Synthetic Approaches1.2.1 Organocatalysis in MCRs
- 1.2.2 Organometallic Catalysis in MCRs
- 1.2.3 Biocatalysis in MCRs
- 1.2.4 Combining Different Types of Catalysis
- 1.2.5 Other Methods
- 1.3 Green Chemistry
- 1.3.1 Atom Economy
- 1.3.2 Using Green Solvents
- 1.3.3 Solventless MCRs
- 1.3.4 Heterogeneous Catalysis in MCRs
- 1.4 Importance and Evolution
- References
- Chapter 2 Organocatalytic Asymmetric Multicomponent Reactions
- 2.1 Introduction
- 2.2 Three-Component Mannich Reaction
- 2.3 Cycloaddition Reaction2.4 Organocatalytic Multicomponent Domino Asymmetric Reactions
- 2.4.1 Michael-Type Multicomponent Process: Cyclic Carbon Frameworks
- 2.4.2 Miscellaneous Domino Reactions
- 2.5 Development of Drug Intermediates
- 2.6 Miscellaneous Reaction
- 2.7 Conclusions
- References
- Chapter 3 Metal-Catalyzed Multicomponent Reactions
- 3.1 Introduction
- 3.2 Palladium-Catalyzed MCRs
- 3.2.1 Palladium-Catalyzed Carbonylation Reactions
- 3.2.2 Palladium-Catalyzed MCRs Involving Isocyanides
- 3.2.3 Carbopalladation of Unsaturated C�C π-Components3.2.4 Amines as Building Blocks
- 3.3 Nickel-Catalyzed MCRs
- 3.3.1 Nickel-Catalyzed Cross-Trimerization of Alkynes
- 3.3.2 Nickel-Catalyzed π-Systems Couplings
- 3.3.3 Ni-Catalyzed Reductive Conjugate Addition
- 3.4 Group 11 Metal-Catalyzed MCRs
- 3.4.1 Copper-Catalyzed Azide Alkyne Cycloaddition
- 3.4.2 A3-Coupling
- 3.4.3 Miscellaneous
- 3.5 Rhodium-Catalyzed MCRs
- 3.5.1 Rhodium-Catalyzed Mcrs via Onium Ylide Intermediates
- 3.5.2 Rhodium-Catalyzed Three-Component Cross-Addition Reactions
- 3.6 Group 8 Metal-Catalyzed MCRs3.6.1 Iron-Catalyzed MCRs
- 3.6.2 Ruthenium-Catalyzed MCRs
- 3.7 Conclusions
- References
- Chapter 4 Multicomponent Reactions with Organoboron Compounds
- 4.1 Introduction
- 4.2 Catalytic MCRs with Organoboron Compounds
- 4.2.1 Cobalt-Catalyzed MCRs Containing Organoboron Compounds
- 4.2.2 Palladium-Catalyzed MCRs Containing Organoboron Compounds
- 4.3 Multicomponent Assembly of Organoboron Compounds: Efficient Approach to Supramolecular Chemistry
- 4.4 Multicomponent Petasis-Borono Mannich Reaction