Cargando…

Non-Euclidean Geometry /

Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Coxeter, H. S. M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2014.
Colección:Bibliografija "Spectrum."
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn899731397
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 140430s2014 enk o 001 0 eng d
040 |a EUX  |b eng  |e pn  |c EUX  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 923220739  |a 929120504 
020 |a 9781614445166  |q (ebook) 
020 |a 1614445168  |q (ebook) 
029 1 |a DEBBG  |b BV043624366 
029 1 |a DEBBG  |b BV044055795 
029 1 |a DEBSZ  |b 449726150 
035 |a (OCoLC)899731397  |z (OCoLC)923220739  |z (OCoLC)929120504 
050 4 |a QA685 ǂb C78 1998eb 
082 0 4 |a 516.9 
049 |a UAMI 
100 1 |a Coxeter, H. S. M. 
245 1 0 |a Non-Euclidean Geometry /  |c H.S.M. Coxeter. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Spectrum 
500 |a Title from publisher's bibliographic system (viewed on 12 Sep 2014). 
505 0 |a Front Cover -- NON-EUCLIDEAN GEOMETRY -- Copyright Page -- PREFACE TO THE SIXTH EDITION -- CONTENTS -- CHAPTER I. THE HISTORICAL DEVELOPMENT OF NON-EUCLIDEAN GEOMETRY -- 1.1 Euclid -- 1.2 Saccheri and Lambert -- 1.3 Gauss, Wachter, Schweikart, Taurinus -- 1.4 Lobatschewsky -- 1.5 Bolyai -- 1.6 Riemann -- 1.7 Klein -- CHAPTER II. REAL PROJECTIVE GEOMETRY: FOUNDATIONS -- 2.1 Definitions and axioms -- 2.2 Models -- 2.3 The principle of duality -- 2.4 Harmonic sets -- 2.5 Sense -- 2.6 Triangular and tetrahedral regions -- 2.7 Ordered correspondences 
505 8 |a 2.8 One-dimensional projectivities2.9 Involutions -- CHAPTER III. REAL PROJECTIVE GEOMETRY: POLARITIES, CONICS AND QUADRICS -- 3.1 Two-dimensional projectivities -- 3.2 Polarities in the plane -- 3.3 Conies -- 3.4 Projectivities on a conic -- 3.5 The fixed points of a collineation -- 3.6 Cones and reguli -- 3.7 Three-dimensional projectivities -- 3.8 Polarities in space -- CHAPTER IV. HOMOGENEOUS COORDINATES -- 4.1 The von Staudt-Hessenberg calculus of points -- 4.2 One-dimensional projectivities -- 4.3 Coordinates in one and two dimensions 
505 8 |a 4.4 Collineations and coordinate transformations4.5 Polarities -- 4.6 Coordinates in three dimensions -- 4.7 Three-dimensional projectivities -- 4.8 Line coordinates for the generators of a quadric -- 4.9 Complex projective geometry -- CHAPTER V. ELLIPTIC GEOMETRY IN ONE DIMENSION -- 5.1 Elliptic geometry in general -- 5.2 Models -- 5.3 Reflections and translations -- 5.4 Congruence -- 5.5 Continuous translation -- 5.6 The length of a segment -- 5.7 Distance in terms of cross ratio -- 5.8 Alternative treatment using the complex line 
505 8 |a CHAPTER VI. ELLIPTIC GEOMETRY IN TWO DIMENSIONS6.1 Spherical and elliptic geometry -- 6.2 Reflection -- 6.3 Rotations and angles -- 6.4 Congruence -- 6.5 Circles -- 6.6 Composition of rotations -- 6.7 Formulae for distance and angle -- 6.8 Rotations and quaternions -- 6.9 Alternative treatment using the complex plane -- CHAPTER VII. ELLIPTIC GEOMETRY IN THREE DIMENSIONS -- 7.1 Congruent transformations -- 7.2 Clifford parallels -- 7.3 The Stephanos-Cartan representation of rotations by points -- 7.4 Right translations and left translations 
505 8 |a 7.5 Right parallels and left parallels7.6 Study's representation of lines by pairs of points -- 7.7 Clifford translations and quaternions -- 7.8 Study's coordinates for a line -- 7.9 Complex space -- CHAPTER VIII. DESCRIPTIVE GEOMETRY -- 8.1 Klein's projective model for hyperbolic geometry -- 8.2 Geometry in a convex region -- 8.3 Veblen's axioms of order -- 8.4 Order in a pencil -- 8.5 The geometry of lines and planes through a fixed point -- 8.6 Generalized bundles and pencils -- 8.7 Ideal points and lines -- 8.8 Verifying the projective axioms 
520 |a Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Tranformations that preserve incidence are called collineations. They lead in a natural way to isometries or 'congruent transformations'. Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Non-Euclidean. 
650 6 |a Géométrie non-euclidienne. 
650 7 |a Geometry, Non-Euclidean  |2 fast 
758 |i has work:  |a Non-Euclidean geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH6XYGGdXKDGWt3wKBJYyd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Coxeter, H.S.M.  |t Non-Euclidean Geometry.  |d Washington : Mathematical Association of America, ©2014  |z 9780883855225 
830 0 |a Bibliografija "Spectrum." 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330454  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25551025 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330454 
994 |a 92  |b IZTAP