Cargando…

The logical foundations of mathematics /

The Logical Foundations of Mathematics.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hatcher, William S.
Otros Autores: Bunge, Mario
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Pergamon Press/Elsevier Science, [2014], ©1982.
Colección:Foundations & philosophy of science & technology.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn898771755
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141227t20141982vtu ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OCLCQ  |d N$T  |d OCLCF  |d DEBSZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781483189635  |q (electronic bk.) 
020 |a 1483189635  |q (electronic bk.) 
029 1 |a CHNEW  |b 000960027 
029 1 |a DEBBG  |b BV043616564 
029 1 |a DEBSZ  |b 431882584 
035 |a (OCoLC)898771755 
050 4 |a QA8.4 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510.1  |2 23 
049 |a UAMI 
100 1 |a Hatcher, William S. 
245 1 4 |a The logical foundations of mathematics /  |c by William S. Hatcher. 
260 |a Burlington :  |b Pergamon Press/Elsevier Science,  |c [2014], ©1982. 
300 |a 1 online resource (331 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Foundations and philosophy of science and technology 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; The Logical Foundations of Mathematics; Copyright Page; Dedication; Preface; Table of Contents; Chapter 1. First-order Logic; 1.1. The sentential calculus; 1.2. Formalization; 1.3. The statement calculus as a formal system; 1.4. First-order theories; 1.5. Models of first-order theories; 1.6. Rules of logic; natural deduction; 1.7. First-order theories with equality; variable-binding term operators; 1.8. Completeness with vbtos; 1.9. An example of a first-order theory; Chapter 2. The Origin of Modern Foundational Studies; 2.1. Mathematics as an independent science. 
505 8 |a 2.2. The arithmetization of analysis2.3. Constructivism; 2.4. Frege and the notion of a formal system; 2.5. Criteria for foundations; Chapter 3. Frege's System and the Paradoxes; 3,1. The intuitive basis of Frege's system; 3.2. Frege's system; 3.3. The theorem of infinity; 3.4. Criticisms of Frege's system; 3.5. The paradoxes; 3.6. Brouwer and intuitionism; 3.7. Poincare'snotion of im predicative definition; 3.8. Russell's principle of vicious circle; 3.9. The logical paradoxes and the semantic paradoxes; Chapter 4. The Theory of Types; 4.1. Quantifying predicate letters. 
505 8 |a 4.2. Predicative type theory4.3. The development of mathematics in PT; 4.4. The system TT; 4.5. Criticisms of type theory as a foundation for mathematics; 4.6. The system ST; 4.7. Type theory and first-order logic; Chapter 5. Zermelo-Fraenkel Set Theory; 5.1. Formalization of ZF; 5.2. The completing axioms; 5.3. Relations, functions, and simple recursion; 5.4. The axiom of choice; 5.5. The continuum hypothesis; descriptive set theory; 5.6. The systems of vonNeumann-Bernays-Godel and Mostowski-Kelley-Morse; 5.7. Number systems; ordinal recursion; 5.8. Conway's numbers. 
505 8 |a Chapter 6. Hilbert's Program and Godel's IncompletenessTheorems6.1. Hilbert's program; 6.2. Godel's theorems and their import; 6.3. The method of proof of Godel's theorems; recursive functions; 6.4. Nonstandard models of S; Chapter 7. The Foundational Systems of W.V. Quine; 7.1. The system NF; 7.2. Cantor's theorem in NF; 7.3. The axiom of choice in NF and the theorem of infinity; 7.4. NF and ST; typical ambiguity; 7.5. Quine's system ML; 7.6. Further results on NF; variant systems; 7.7. Conclusions; Chapter 8. Categorical Algebra; 8.1. The notion of a category. 
505 8 |a 8.2. The first-order language of categories8.3. Category theory and set theory; 8.4. Functors and large categories; 8.5. Formal development of the language and theory CS; 8.6. Topos theory; 8.7. Global elements in toposes; 8.8. Image factorizations and the axiom of choice; 8.9. A last look at CS; 8.10. ZF andWT; 8.11. The internal logic of toposes; 8.12. The internal language of a topos; 8.13. Conclusions; Selected Bibliography; Index. 
520 |a The Logical Foundations of Mathematics. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics  |x Philosophy. 
650 6 |a Mathématiques  |x Philosophie. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Mathematics  |x Philosophy  |2 fast 
700 1 |a Bunge, Mario. 
758 |i has work:  |a The logical foundations of mathematics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvGt6FbHHRCYq8cctg83P  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hatcher, William S.  |t Logical Foundations of Mathematics : Foundations and Philosophy of Science and Technology Series.  |d Burlington : Elsevier Science, ©2014  |z 9780080258003 
830 0 |a Foundations & philosophy of science & technology. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1901360  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1901360 
938 |a EBSCOhost  |b EBSC  |n 931370 
994 |a 92  |b IZTAP