Cargando…

How to implement market models using VBA /

"Accessible VBA coding for complex financial modellingImplementing Market Models Using VBA makes solving complex valuation issues accessible to any financial professional with a taste for mathematics. With a focus on the clarity of code, this practical introductory guide includes chapters on VB...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Goossens, Francois, 1960-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chicester, West Sussex UK : John Wiley & Sons, Inc., 2015.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; Preface; Acknowledgements; Abbreviations; About the Author; Chapter 1 The Basics of VBA Programming; 1.1 Getting started; 1.2 VBA objects and syntax; 1.2.1 The object-oriented basic syntax; 1.2.2 Using objects; 1.3 Variables; 1.3.1 Variable declaration; 1.3.2 Some usual objects; 1.3.3 Arrays; 1.4 Arithmetic; 1.5 Subroutines and functions; 1.5.1 Subroutines; 1.5.2 Functions; 1.5.3 Operations on one-dimensional arrays; 1.5.4 Operations on two-dimensional arrays (matrices); 1.5.5 Operations with dates; 1.6 Custom objects; 1.6.1 Types; 1.6.2 Classes.
  • 1.7 Debugging1.7.1 Error handling; 1.7.2 Tracking the code execution; Chapter 2 Mathematical Algorithms; 2.1 Introduction; 2.2 Sorting lists; 2.2.1 Shell sort; 2.2.2 Quick sort; 2.3 Implicit equations; 2.4 Search for extrema; 2.4.1 The Nelder-Mead algorithm; 2.4.2 The simulated annealing; 2.5 Linear algebra; 2.5.1 Matrix inversion; 2.5.2 Cholesky decomposition; 2.5.3 Interpolation; 2.5.4 Integration; 2.5.5 Principal Component Analysis; Chapter 3 Vanilla Instruments; 3.1 Definitions; 3.2 Fixed income; 3.2.1 Bond market; 3.2.2 Interbank market; 3.3 Vanilla derivatives; 3.3.1 Forward contracts.
  • 3.3.2 Swaps3.3.3 Bond futures; 3.4 Options basics; 3.4.1 Brownian motion; 3.4.2 Ito integral; 3.4.3 Ito formula; 3.4.4 Black-Scholes basic model; 3.4.5 Risk-neutral probability; 3.4.6 Change of probability; 3.4.7 Martingale and numeraires; 3.4.8 European-style options pricing; 3.5 First generation exotic options; 3.5.1 Barrier options; 3.5.2 Quanto options; Chapter 4 Numerical Solutions; 4.1 Finite differences; 4.1.1 Generic equation; 4.1.2 Implementation; 4.2 Trees; 4.2.1 Binomial trees; 4.2.2 Trinomial trees; 4.3 Monte-Carlo scenarios; 4.3.1 Uniform number generator.
  • 4.3.2 From uniform to Gaussian numbers4.4 Simulation and regression; 4.5 Double-barrier analytical approximation; Chapter 5 Monte-Carlo Pricing Issues; 5.1 Multi-asset simulation; 5.1.1 The correlations issue; 5.1.2 The Gaussian case; 5.1.3 Exotics; 5.2 Discretization schemes; 5.3 Variance reduction techniques; 5.3.1 Antithetic variates; 5.3.2 Importance sampling; 5.3.3 Control variates; Chapter 6 Yield Curve Models; 6.1 Short rate models; 6.1.1 Introduction; 6.1.2 Hull and White one-factor model; 6.1.3 Gaussian two-factor model; 6.1.4 Hull and White two-factor model; 6.2 Forward rate models.
  • 6.2.1 Generic Heath-Jarrow-Morton6.2.2 LMM (LIBOR market model); Chapter 7 Stochastic Volatilities; 7.1 The Heston model; 7.1.1 Code; 7.1.2 A faster algorithm; 7.1.3 Calibration; 7.2 Barrier options; 7.2.1 Numerical results; 7.2.2 Code; 7.3 Asian-style options; 7.4 SABR model; 7.4.1 Caplets; 7.4.2 Code; Chapter 8 Interest Rate Exotics; 8.1 CMS swaps; 8.1.1 Code; 8.2 Cancelable swaps; 8.2.1 Code; 8.2.2 Tree approximation; 8.3 Target redemption note; 8.3.1 Code; Bibliography; Index; EULA.