Cargando…

Smooth analysis in Banach spaces /

This bookis aboutthe subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves ar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hájek, Petr
Otros Autores: Johanis, Michal
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; München ; Boston : DE GRUYTER, 2014.
Edición:2014.
Colección:De Gruyter series in nonlinear analysis and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn897443938
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nn||||mam|a
008 141024t20142014gw fob 001 0 eng d
040 |a OTZ  |b eng  |e pn  |c OTZ  |d EBLCP  |d E7B  |d DEBBG  |d DEBSZ  |d S4S  |d YDXCP  |d COO  |d IDEBK  |d YDX  |d ZCU  |d MERUC  |d OCLCQ  |d OCLCO  |d ICG  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897564754  |a 898769617  |a 958353919 
020 |a 9783110258998 
020 |a 3110258994 
020 |z 9783110258981 
020 |z 3110258986 
024 7 0 |a 10.1515/9783110258998  |2 doi 
029 1 |a AU@  |b 000053982533 
029 1 |a DEBBG  |b BV042524508 
029 1 |a DEBBG  |b BV044062521 
029 1 |a DEBSZ  |b 431347468 
029 1 |a DEBSZ  |b 446765740 
035 |a (OCoLC)897443938  |z (OCoLC)897564754  |z (OCoLC)898769617  |z (OCoLC)958353919 
050 4 |a QA322.2 .H35 2014 
072 7 |a QA  |2 lcco 
082 0 4 |a 510 
049 |a UAMI 
100 1 |a Hájek, Petr. 
245 1 0 |a Smooth analysis in Banach spaces /  |c Petr Hájek, Michal Johanis. 
250 |a 2014. 
264 1 |a Berlin ;  |a München ;  |a Boston :  |b DE GRUYTER,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Series in Nonlinear Analysis and Applications ;  |v v. 19 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction; Chapter 1. Fundamental properties of smoothness; 1. Multilinear mappings and polynomials; 2. Complexification; 3. Fréchet smoothness; 4. Taylor polynomial; 5. Smoothness classes; 6. Power series and their convergence; 7. Complex mappings; 8. Analytic mappings; 9. Notes and remarks; Chapter 2. Basic properties of polynomials on Rn; 1. Spaces of polynomials on Rn; 2. Cubature formulae; 3. Estimates related to Chebyshev polynomials; 4. Polynomials and L_p-norms on Rn; 5. Polynomial identities; 6. Estimates of coefficients of polynomials; 7. Notes and remarks. 
505 8 |a Chapter 3. Weak continuity of polynomials and estimates of coefficients1. Tensor products and spaces of multilinear mappings; 2. Weak continuity and spaces of polynomials; 3. Weak continuity and _1; 4. (p, q)-summing operators; 5. Estimates of coefficients of multilinear mappings; 6. Bohr radius; 7. Notes and remarks; Chapter 4. Asymptotic properties of polynomials; 1. Finite representability and ultraproducts; 2. Spreading models; 3. Polynomials and p-estimates; 4. Separating polynomials. Symmetric and sub-symmetric polynomials; 5. Stabilisation of polynomials. 
505 8 |a 6. Sub-symmetric polynomials on Rn7. Polynomial algebras on Banach spaces; 8. Notes and remarks; Chapter 5. Smoothness and structure; 1. Convex functions; 2. Smooth bumps and structure I; 3. Smooth variational principles; 4. Smooth bumps and structure II; 5. Local dependence on finitely many coordinates; 6. Isomorphically polyhedral spaces; 7. L_p spaces; 8. C(K) spaces; 9. Orlicz spaces; 10. Notes and remarks; Chapter 6. Structural behaviour of smooth mappings; 1. Weak uniform continuity and higher smoothness; 2. Bidual extensions; 3. Class ==========W. 
505 8 |a 4. Uniformly smooth mappings from C(K), K scattered5. Uniformly smooth mappings from ==========W-spaces; 6. Fixing the canonical basis of c_0; 7. Ranges of smooth mappings; 8. Harmonic behaviour of smooth mappings; 9. Notes and remarks; Chapter 7. Smooth approximation; 1. Separation; 2. Approximation by polynomials; 3. Approximation by real-analytic mappings; 4. Infimal convolution; 5. Approximation of continuous mappings and partitions of unity; 6. Non-linear embeddings into c_0(); 7. Approximation of Lipschitz mappings; 8. Approximation of C1-smooth mappings; 9. Approximation of norms. 
505 8 |a 10. Notes and remarksBibliography; Notation; Index. 
520 |a This bookis aboutthe subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into in. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Banach spaces. 
650 0 |a Normed linear spaces. 
650 0 |a Polynomials. 
650 6 |a Espaces de Banach. 
650 6 |a Espaces linéaires normés. 
650 6 |a Polynômes. 
650 7 |a Banach spaces  |2 fast 
650 7 |a Normed linear spaces  |2 fast 
650 7 |a Polynomials  |2 fast 
650 7 |a Polynom  |2 gnd 
650 7 |a Banach-Raum  |2 gnd 
650 7 |a Stetige Abbildung  |2 gnd 
650 7 |a Glatte Funktion  |2 gnd 
700 1 |a Johanis, Michal. 
776 0 |c Print  |z 9783110258981 
830 0 |a De Gruyter series in nonlinear analysis and applications. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1130389  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1130389 
938 |a ebrary  |b EBRY  |n ebr11006472 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24871518 
938 |a YBP Library Services  |b YANK  |n 10817436 
938 |a YBP Library Services  |b YANK  |n 13157101 
994 |a 92  |b IZTAP