Solutions Manual to Accompany Beginning Partial Differential Equations.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Wiley,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Series
- Title Page
- Copyright
- Preface
- Chapter 1: First Ideas
- 1.1 Two Partial Differential Equations
- 1.2 Fourier Series
- 1.3 Two Eigenvalue Problems
- 1.4 A Proof of the Convergence Theorem
- Chapter 2: Solutions of the Heat Equation
- 2.1 Solutions on an Interval [0,L]
- 2.2 A Nonhomogeneous Problem
- Chapter 3: Solutions of the Wave Equation
- 3.1 Solutions on Bounded Intervals
- 3.2 The Cauchy Problem
- 3.3 The Wave Equation in Higher Dimensions
- Chapter 4: Dirichlet and Neumann Problems
- 4.1 Laplace's Equation and Harmonic Functions
- 4.2 The Dirichlet Problem for a Rectangle
- 4.3 The Dirichlet Problem for a Disk
- 4.4 Properties of Harmonic Functions
- 4.5 The Neumann Problem
- 4.6 Poisson's Equation
- 4.7 An Existence Theorem for the Dirichlet Problem
- Chapter 5: Fourier Integral Methods of Solution
- 5.1 The Fourier Integral of a Function
- 5.2 The Heat Equation on the Real Line
- 5.3 The Debate Over the Age of the Earth
- 5.4 Burgers' Equation
- 5.5 The Cauchy Problem for the Wave Equation
- 5.6 Laplace's Equation on Unbounded Domains
- Chapter 6: Solutions Using Eigenfunction Expansions
- 6.1 A Theory of Eigenfunction Expansions
- 6.2 Bessel Functions
- 6.3 Applications of Bessel Functions
- 6.4 Legendre Polynomials and Applications
- Chapter 7: Integral Transform Methods of Solution
- 7.1 The Fourier Transform
- 7.2 Heat and Wave Equations
- 7.3 The Telegraph Equation
- 7.4 The Laplace Transform
- Chapter 8: First-Order Equations
- 8.1 Linear First-Order Equations
- 8.2 The Significance of Characteristics
- 8.3 The Quasi-Linear Equation
- Series List
- End User License Agreement