Welding Metallurgy and Weldability.
Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and f...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Wiley,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Welding Metallurgy and Weldability
- Copyright
- Contents
- Preface
- Author Biography
- Chapter 1 Introduction
- 1.1 Fabrication-Related Defects
- 1.2 Service-Related Defects
- 1.3 Defect Prevention and Control
- References
- Chapter 2 Welding Metallurgy Principles
- 2.1 Introduction
- 2.2 Regions of a Fusion Weld
- 2.3 Fusion Zone
- 2.3.1 Solidification of Metals
- 2.3.1.1 Solidification Parameters
- 2.3.1.2 Solidification Nucleation
- 2.3.1.3 Solidification Modes
- 2.3.1.4 Interface Stability
- 2.3.2 Macroscopic Aspects of Weld Solidification
- 2.3.2.1 Effect of Travel Speed and Temperature Gradient
- 2.3.3 Microscopic Aspects of Weld Solidification
- 2.3.3.1 Solidification Subgrain Boundaries (SSGB)
- 2.3.3.2 Solidification Grain Boundaries (SGB)
- 2.3.3.3 Migrated Grain Boundaries (MGB)
- 2.3.4 Solute Redistribution
- 2.3.4.1 Macroscopic Solidification
- 2.3.4.2 Microscopic Solidification
- 2.3.5 Examples of Fusion Zone Microstructures
- 2.3.6 Transition Zone (TZ)
- 2.4 Unmixed Zone (UMZ)
- 2.5 Partially Melted Zone (PMZ)
- 2.5.1 Penetration Mechanism
- 2.5.2 Segregation Mechanism
- 2.5.2.1 Gibbsian Segregation
- 2.5.2.2 Grain Boundary Sweeping
- 2.5.2.3 Pipeline Diffusion
- 2.5.2.4 Grain Boundary Wetting
- 2.5.3 Examples of PMZ formation
- 2.6 Heat Affected Zone (HAZ)
- 2.6.1 Recrystallization and Grain Growth
- 2.6.2 Allotropic Phase Transformations
- 2.6.3 Precipitation Reactions
- 2.6.4 Examples of HAZ Microstructure
- 2.7 Solid-State Welding
- 2.7.1 Friction Stir Welding
- 2.7.2 Diffusion Welding
- 2.7.3 Explosion Welding
- 2.7.4 Ultrasonic Welding
- References
- Chapter 3 Hot Cracking
- 3.1 Introduction
- 3.2 Weld Solidification Cracking
- 3.2.1 Theories of Weld Solidification Cracking
- 3.2.1.1 Shrinkage-Brittleness Theory
- 3.2.1.2 Strain Theory
- 3.2.1.3 Generalized Theory.
- 3.2.1.4 Modified Generalized Theory
- 3.2.1.5 Technological Strength Theory
- 3.2.1.6 Commentary on Solidification Cracking Theories
- 3.2.2 Predictions of Elemental Effects
- 3.2.3 The BTR and Solidification Cracking Temperature Range
- 3.2.4 Factors that Influence Weld Solidification Cracking
- 3.2.4.1 Composition Control
- 3.2.4.2 Grain Boundary Liquid Films
- 3.2.4.3 Effect of Restraint
- 3.2.5 Identifying Weld Solidification Cracking
- 3.2.6 Preventing Weld Solidification Cracking
- 3.3 Liquation Cracking
- 3.3.1 HAZ Liquation Cracking
- 3.3.2 Weld Metal Liquation Cracking
- 3.3.3 Variables that Influence Susceptibility to Liquation Cracking
- 3.3.3.1 Composition
- 3.3.3.2 Grain Size
- 3.3.3.3 Base Metal Heat Treatment
- 3.3.3.4 Weld Heat Input and Filler Metal Selection
- 3.3.4 Identifying HAZ and Weld Metal Liquation Cracks
- 3.3.5 Preventing Liquation Cracking
- References
- Chapter 4 Solid-State Cracking
- 4.1 Introduction
- 4.2 Ductility-Dip Cracking
- 4.2.1 Proposed Mechanisms
- 4.2.2 Summary of Factors That Influence DDC
- 4.2.3 Quantifying Ductility-Dip Cracking
- 4.2.4 Identifying Ductility-Dip Cracks
- 4.2.5 Preventing DDC
- 4.3 Reheat Cracking
- 4.3.1 Reheat Cracking in Low-Alloy Steels
- 4.3.2 Reheat Cracking in Stainless Steels
- 4.3.3 Underclad Cracking
- 4.3.4 Relaxation Cracking
- 4.3.5 Identifying Reheat Cracking
- 4.3.6 Quantifying Reheat Cracking Susceptibility
- 4.3.7 Preventing Reheat Cracking
- 4.4 Strain-Age Cracking
- 4.4.1 Mechanism for Strain-age Cracking
- 4.4.2 Factors That Influence SAC Susceptibility
- 4.4.2.1 Composition
- 4.4.2.2 Grain Size
- 4.4.2.3 Residual Stress and Restraint
- 4.4.2.4 Welding Procedure
- 4.4.2.5 Effect of PWHT
- 4.4.3 Quantifying Susceptibility to Strain-age Cracking
- 4.4.4 Identifying Strain-age Cracking
- 4.4.5 Preventing Strain-age Cracking.
- 4.5 Lamellar Cracking
- 4.5.1 Mechanism of Lamellar Cracking
- 4.5.2 Quantifying Lamellar Cracking
- 4.5.3 Identifying Lamellar Cracking
- 4.5.4 Preventing Lamellar Cracking
- 4.6 Copper Contamination Cracking
- 4.6.1 Mechanism for Copper Contamination Cracking
- 4.6.2 Quantifying Copper Contamination Cracking
- 4.6.3 Identifying Copper Contamination Cracking
- 4.6.4 Preventing Copper Contamination Cracking
- References
- Chapter 5 Hydrogen-Induced Cracking
- 5.1 Introduction
- 5.2 Hydrogen Embrittlement Theories
- 5.2.1 Planar Pressure Theory
- 5.2.2 Surface Adsorption Theory
- 5.2.3 Decohesion Theory
- 5.2.4 Hydrogen-Enhanced Localized Plasticity Theory
- 5.2.5 Beachem's Stress Intensity Model
- 5.3 Factors That Influence HIC
- 5.3.1 Hydrogen in Welds
- 5.3.2 Effect of Microstructure
- 5.3.3 Restraint
- 5.3.4 Temperature
- 5.4 Quantifying Susceptibility to HIC
- 5.4.1 Jominy End Quench Method
- 5.4.2 Controlled Thermal Severity Test
- 5.4.3 The Y-Groove (Tekken) Test
- 5.4.4 Gapped Bead-on-Plate Test
- 5.4.5 The Implant Test
- 5.4.6 Tensile Restraint Cracking Test
- 5.4.7 Augmented Strain Cracking Test
- 5.5 Identifying HIC
- 5.6 Preventing HIC
- 5.6.1 CE Method
- 5.6.2 AWS Method
- References
- Chapter 6 Corrosion
- 6.1 Introduction
- 6.2 Forms of Corrosion
- 6.2.1 General Corrosion
- 6.2.2 Galvanic Corrosion
- 6.2.3 Crevice Corrosion
- 6.2.4 Selective Leaching
- 6.2.5 Erosion Corrosion
- 6.2.6 Pitting
- 6.2.7 Intergranular Corrosion
- 6.2.7.1 Preventing Sensitization
- 6.2.7.2 Knifeline Attack
- 6.2.7.3 Low-Temperature Sensitization
- 6.2.8 Stress Corrosion Cracking
- 6.2.9 Microbiologically Induced Corrosion
- 6.3 Corrosion Testing
- 6.3.1 Atmospheric Corrosion Tests
- 6.3.2 Immersion Tests
- 6.3.3 Electrochemical Tests
- References
- Chapter 7 Fracture and Fatigue
- 7.1 Introduction.
- 7.2 Fracture
- 7.3 Quantifying Fracture Toughness
- 7.4 Fatigue
- 7.5 Quantifying Fatigue Behavior
- 7.6 Identifying Fatigue Cracking
- 7.6.1 Beach Marks
- 7.6.2 River Lines
- 7.6.3 Fatigue Striations
- 7.7 Avoiding Fatigue Failures
- References
- Chapter 8 Failure Analysis
- 8.1 Introduction
- 8.2 Fractography
- 8.2.1 History of Fractography
- 8.2.2 The SEM
- 8.2.3 Fracture Modes
- 8.2.4 Fractography of Weld Failures
- 8.2.4.1 Solidification Cracking
- 8.2.4.2 Liquation Cracking
- 8.2.4.3 Ductility-Dip Cracking
- 8.2.4.4 Reheat Cracking
- 8.2.4.5 Strain-Age Cracking
- 8.2.4.6 Hydrogen-Induced Cracking
- 8.3 An Engineer's Guide to Failure Analysis
- 8.3.1 Site Visit
- 8.3.2 Collect Background Information
- 8.3.3 Sample Removal and Testing Protocol
- 8.3.4 Sample Removal, Cleaning, and Storage
- 8.3.5 Chemical Analysis
- 8.3.6 Macroscopic Analysis
- 8.3.7 Selection of Samples for Microscopic Analysis
- 8.3.8 Selection of Analytical Techniques
- 8.3.9 Mechanical Testing
- 8.3.10 Simulative Testing
- 8.3.11 Nondestructive Evaluation Techniques
- 8.3.12 Structural Integrity Assessment
- 8.3.13 Consultation with Experts
- 8.3.14 Final Reporting
- 8.3.15 Expert Testimony in Support of Litigation
- References
- Chapter 9 Weldability Testing
- 9.1 Introduction
- 9.2 Types of Weldability Test Techniques
- 9.3 The Varestraint Test
- 9.3.1 Technique for Quantifying Weld Solidification Cracking
- 9.3.2 Technique for Quantifying HAZ Liquation Cracking
- 9.4 The Cast Pin Tear Test
- 9.5 The Hot Ductility Test
- 9.6 The Strain-to-Fracture Test
- 9.7 Reheat Cracking Test
- 9.8 Implant Test for HAZ Hydrogen-Induced Cracking
- 9.9 Gapped Bead-on-Plate Test for Weld Metal HIC
- 9.10 Other Weldability Tests
- References
- Appendix A Composition of Selected Steels
- Appendix B Nominal Composition ofStainless Steels.
- Appendix C Composition of Nickel-Base Alloys
- Appendix D Etching Techniques
- A4.1 Steels
- A4.2 Stainless Steels
- A4.3 Nickel-Base Alloys
- A4.4 Fracture Surface Cleaning
- References
- Index
- End User License Agreement.