Cargando…

Set-valued optimization : an introduction with applications /

Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Khan, Akhtar A. (Autor), Tammer, Christiane (Autor), Zălinescu, Constantin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Springer, [2015]
Colección:Vector optimization.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn894915420
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141110s2015 gw a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d COO  |d YDXCP  |d OCLCF  |d IDEBK  |d EBLCP  |d VLB  |d OCLCQ  |d DEBBG  |d UAB  |d Z5A  |d FIE  |d ESU  |d OCLCQ  |d VT2  |d REB  |d U3W  |d IOG  |d CEF  |d MUO  |d OCLCQ  |d INT  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d UKMGB  |d OL$  |d LEAUB  |d OCLCQ  |d ERF  |d OCLCQ  |d SFB  |d AJS  |d OCLCQ  |d OCLCO  |d AAA  |d OCLCO  |d COM  |d OCLCO  |d OCL  |d DCT  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d OCLCQ 
066 |c (S 
015 |a GBB953404  |2 bnb 
016 7 |a 019302333  |2 Uk 
019 |a 908089158  |a 1005757983  |a 1026460819  |a 1048124520  |a 1066647611  |a 1086443077  |a 1111061225  |a 1112603162  |a 1127216189  |a 1156175763  |a 1161348891  |a 1162621453  |a 1204063394  |a 1241771869 
020 |a 9783642542657  |q (electronic bk.) 
020 |a 3642542654  |q (electronic bk.) 
020 |a 3642542646  |q (print) 
020 |a 9783642542640  |q (print) 
020 |z 9783642542640 
020 |a 9783642542664  |q (print) 
020 |a 3642542662 
020 |a 9783662510360  |q (print) 
020 |a 3662510367 
024 7 |a 10.1007/978-3-642-54265-7  |2 doi 
029 1 |a AU@  |b 000056032258 
029 1 |a DEBBG  |b BV042991260 
029 1 |a DEBBG  |b BV043618807 
029 1 |a NLGGC  |b 383748895 
029 1 |a NZ1  |b 15841700 
029 1 |a UKMGB  |b 019302333 
029 1 |a DKDLA  |b 820120-katalog:999916971605765 
035 |a (OCoLC)894915420  |z (OCoLC)908089158  |z (OCoLC)1005757983  |z (OCoLC)1026460819  |z (OCoLC)1048124520  |z (OCoLC)1066647611  |z (OCoLC)1086443077  |z (OCoLC)1111061225  |z (OCoLC)1112603162  |z (OCoLC)1127216189  |z (OCoLC)1156175763  |z (OCoLC)1161348891  |z (OCoLC)1162621453  |z (OCoLC)1204063394  |z (OCoLC)1241771869 
037 |a com.springer.onix.9783642542657  |b Springer Nature 
050 4 |a QA1  |b .K43 2015eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a PBU  |2 bicssc 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.3  |2 23 
049 |a UAMI 
100 1 |a Khan, Akhtar A.,  |e author. 
245 1 0 |a Set-valued optimization :  |b an introduction with applications /  |c Akhtar A. Khan, Christiane Tammer, Constantin Zălinescu. 
264 1 |a Berlin :  |b Springer,  |c [2015] 
300 |a 1 online resource (xxii, 765 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a Vector Optimization,  |x 1867-8971 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 10, 2014). 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a Introduction -- Order Relations and Ordering Cones -- Continuity and Differentiability -- Tangent Cones and Tangent Sets -- Nonconvex Separation Theorems -- Hahn-Banach Type Theorems -- Hahn-Banach Type Theorems -- Conjugates and Subdifferentials -- Duality -- Existence Results for Minimal Points -- Ekeland Variational Principle -- Derivatives and Epiderivatives of Set-valued Maps -- Optimality Conditions in Set-valued Optimization -- Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities -- Numerical Methods for Solving Set-valued Optimization Problems -- Applications. 
520 |a Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality, and applications in economics among other things. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Duality theory (Mathematics) 
650 0 |a Mathematical optimization. 
650 0 |a Set-valued maps. 
650 0 |a Programming (Mathematics) 
650 0 |a Search theory. 
650 0 |a Mathematics. 
650 2 2 |a Decision Theory 
650 2 |a Mathematics 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 6 |a Principe de dualité (Mathématiques) 
650 6 |a Optimisation mathématique. 
650 6 |a Applications multivoques. 
650 6 |a Programmation (Mathématiques) 
650 6 |a Théorie de la décision. 
650 6 |a Mathématiques. 
650 7 |a applied mathematics.  |2 aat 
650 7 |a mathematics.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Optimización matemática  |2 embne 
650 7 |a Search theory  |2 fast 
650 7 |a Duality theory (Mathematics)  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Programming (Mathematics)  |2 fast 
650 7 |a Set-valued maps  |2 fast 
700 1 |a Tammer, Christiane,  |e author. 
700 1 |a Zălinescu, Constantin,  |e author. 
758 |i has work:  |a Set-valued optimization (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGQG43RWMR4GMRfjkxFPHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642542640 
830 0 |a Vector optimization. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1968316  |z Texto completo 
880 0 0 |6 505-01/(S  |t Pavel --  |g 4.15.4.  |t Connections Among the Second-Order Tangent Cones --  |g 4.16.  |t Second-Order Local Approximation --  |g 4.17.  |t Higher-Order Tangent Cones and Tangent Sets --  |g 5.1.  |t Separating Functions and Examples --  |g 5.2.  |t Nonlinear Separation --  |g 5.2.1.  |t Construction of Scalarizing Functionals --  |g 5.2.2.  |t Properties of Scalarization Functions --  |g 5.2.3.  |t Continuity Properties --  |g 5.2.4.  |t Lipschitz Properties --  |g 5.2.5.  |t Formula for the Conjugate and Subdifferential of φA for A Convex --  |g 5.3.  |t Scalarizing Functionals by Hiriart-Urruty and Zaffaroni --  |g 5.4.  |t Characterization of Solutions of Set-Valued Optimization Problems by Means of Nonlinear Scalarizing Functionals --  |g 5.4.1.  |t Extension of the Functional cpA --  |g 5.4.2.  |t Characterization of Solutions of Set-Valued Optimization Problems with Lower Set Less Order Relation> or = to C by Scalarization --  |g 5.5.  |t Extremal Principle --  |g 6.1.  |t Hahn-Banach-Kantorovich Theorem --  |g 6.2.  |t Classical Separation Theorems for Convex Sets --  |g 6.3.  |t Core Convex Topology --  |g 6.4.  |t Yang's Generalization of the Hahn-Banach Theorem --  |g 6.5.  |t Sufficient Condition for the Convexity of R+A --  |g 7.1.  |t Strong Conjugate and Subdifferential --  |g 7.2.  |t Weak Subdifferential --  |g 7.3.  |t Subdifferentials Corresponding to Henig Proper Efficiency --  |g 7.4.  |t Exact Formulas for the Subdifferential of the Sum and the Composition --  |g 8.1.  |t Duality Assertions for Set-Valued Problems Based on Vector Approach --  |g 8.1.1.  |t Conjugate Duality for Set-Valued Problems Based on Vector Approach --  |g 8.1.2.  |t Lagrange Duality for Set-Valued Optimization Problems Based on Vector Approach --  |g 8.2.  |t Duality Assertions for Set-Valued Problems Based on Set Approach --  |g 8.3.  |t Duality Assertions for Set-Valued Problems Based on Lattice Structure --  |g 8.3.1.  |t Conjugate Duality for F-Valued Problems --  |g 8.3.2.  |t Lagrange Duality for F-Valued Problems --  |g 8.4.  |t Comparison of Different Approaches to Duality in Set-Valued Optimization --  |g 8.4.1.  |t Lagrange Duality --  |g 8.4.2.  |t Subdifferentials and Stability --  |g 8.4.3.  |t Duality Statements with Operators as Dual Variables --  |g 9.1.  |t Preliminary Notions and Results Concerning Transitive Relations --  |g 9.2.  |t Existence of Minimal Elements with Respect to Transitive Relations --  |g 9.3.  |t Existence of Minimal Points with Respect to Cones --  |g 9.4.  |t Types of Convex Cones and Compactness with Respect to Cones --  |g 9.5.  |t Existence of Optimal Solutions for Vector and Set Optimization Problems --  |g 10.1.  |t Preliminary Notions and Results --  |g 10.2.  |t Minimal Points in Product Spaces --  |g 10.3.  |t Minimal Points in Product Spaces of Isac-Tammer's Type --  |g 10.4.  |t Ekeland's Variational Principles of Ha's Type --  |g 10.5.  |t Ekeland's Variational Principle for Bi-Set-Valued Maps --  |g 10.6.  |t EVP Type Results --  |g 10.7.  |t Error Bounds --  |g 11.1.  |t Contingent Derivatives of Set-Valued Maps --  |g 11.1.1.  |t Miscellaneous Graphical Derivatives of Set-valued Maps --  |g 11.1.2.  |t Convexity Characterization Using Contingent Derivatives --  |g 11.1.3.  |t Proto-Differentiability, Semi-Differentiability, and Related Concepts --  |g 11.1.4.  |t Weak Contingent Derivatives of Set-Valued Maps --  |g 11.1.5.  |t Lyusternik-Type Theorem Using Contingent Derivatives --  |g 11.2.  |t Calculus Rules for Derivatives of Set-Valued Maps --  |g 11.2.1.  |t Calculus Rules by a Direct Approach --  |g 11.2.2.  |t Derivative Rules by Using Calculus of Tangent Cones --  |g 11.3.  |t Contingently C -Absorbing Maps --  |g 11.4.  |t Epiderivatives of Set-Valued Maps --  |g 11.4.1.  |t Contingent Epiderivatives of Set-Valued Maps with Images in R --  |g 11.4.2.  |t Contingent Epiderivatives in General Spaces --  |g 11.4.3.  |t Existence Theorems for Contingent Epiderivatives --  |g 11.4.4.  |t Variational Characterization of the Contingent Epiderivatives --  |g 11.5.  |t Generalized Contingent Epiderivatives of Set-Valued Maps --  |g 11.5.1.  |t Existence Theorems for Generalized Contingent Epiderivatives --  |g 11.5.2.  |t Characterizations of Generalized Contingent Epiderivatives --  |g 11.6.  |t Calculus Rules for Contingent Epiderivatives --  |g 11.7.  |t Second-Order Derivatives of Set-Valued Maps --  |g 11.8.  |t Calculus Rules for Second-Order Contingent Derivatives --  |g 11.9.  |t Second-Order Epiderivatives of Set-Valued Maps --  |g 12.1.  |t First-Order Optimality Conditions by the Direct Approach --  |g 12.2.  |t First-Order Optimality Conditions by the Dubovitskii-Milyutin Approach --  |g 12.2.1.  |t Necessary Optimality Conditions by the Dubovitskii-Milyutin Approach --  |g 12.2.2.  |t Inverse Images and Subgradients of Set-Valued Maps --  |g 12.2.3.  |t Separation Theorems and the Dubovitskii-Milyutin Lemma --  |g 12.2.4.  |t Lagrange Multiplier Rules by the Dubovitskii-Milyutin Approach --  |g 12.3.  |t Sufficient Optimality Conditions in Set-Valued Optimization --  |g 12.3.1.  |t Sufficient Optimality Conditions Under Convexity and Quasi-Convexity --  |g 12.3.2.  |t Sufficient Optimality Conditions Under Paraconvexity --  |g 12.3.3.  |t Sufficient Optimality Conditions Under Semidifferentiability --  |g 12.4.  |t Second-Order Optimality Conditions in Set-Valued Optimization --  |g 12.4.1.  |t Second-Order Optimality Conditions by the Dubovitskii-Milyutin Approach --  |g 12.4.2.  |t Second-Order Optimality Conditions by the Direct Approach --  |g 12.5.  |t Generalized Dubovitskii-Milyutin Approach in Set-Valued Optimization --  |g 12.5.1.  |t Separation Theorem for Multiple Closed and Open Cones --  |g 12.5.2.  |t First-Order Generalized Dubovitskii-Milyutin Approach --  |g 12.5.3.  |t Second-Order Generalized Dubovitskii-Milyutin Approach --  |g 12.6.  |t Set-Valued Optimization Problems with a Variable Order Structure --  |g 12.7.  |t Optimality Conditions for Q-Minimizers in Set-Valued Optimization --  |g 12.7.1.  |t Optimality Conditions for Q-Minimizers Using Radial Derivatives --  |g 12.7.2.  |t Optimality Conditions for Q-Minimizers Using Coderivatives --  |g 12.8.  |t Lagrange Multiplier Rules Based on Limiting Subdifferential --  |g 12.9.  |t Necessary Conditions for Approximate Solutions of Set-Valued Optimization Problems --  |g 12.10.  |t Necessary and Sufficient Conditions for Solution Concepts Based on Set Approach --  |g 12.11.  |t Necessary Conditions for Solution Concepts with Respect to a General Preference Relation --  |g 12.12.  |t KKT-Points and Corresponding Stability Results --  |g 13.1.  |t First Order Sensitivity Analysis in Set-Valued Optimization --  |g 13.2.  |t Second Order Sensitivity Analysis in Set-Valued Optimization --  |g 13.3.  |t Sensitivity Analysis in Set-Valued Optimization Using Coderivatives --  |g 13.4.  |t Sensitivity Analysis for Vector Variational Inequalities. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1968316 
938 |a EBSCOhost  |b EBSC  |n 876014 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29981516 
938 |a YBP Library Services  |b YANK  |n 12143635 
994 |a 92  |b IZTAP