Cargando…

Optimization in Engineering Sciences : Approximate and Metaheuristic Methods.

The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Tec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stefanoiu, Dan
Otros Autores: Borne, Pierre, Popescu, Dumitru, Filip, Florin Gheorghe, El Kamel, Abdelkader
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn894791373
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 141108s2014 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCF  |d OCLCO  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781118648773 
020 |a 1118648773 
029 1 |a DEBSZ  |b 431817383 
029 1 |a DEBBG  |b BV044071196 
029 1 |a AU@  |b 000056030776 
035 |a (OCoLC)894791373 
050 4 |a QA279 
050 4 |a QA331.7 
082 0 4 |a 515.9 
049 |a UAMI 
100 1 |a Stefanoiu, Dan. 
245 1 0 |a Optimization in Engineering Sciences :  |b Approximate and Metaheuristic Methods. 
260 |a Hoboken :  |b Wiley,  |c 2014. 
300 |a 1 online resource (446 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |6 880-01  |a Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Preface; Acknowledgments; 1: Metaheuristics -- Local Methods; 1.1. Overview; 1.2. Monte Carlo principle; 1.3. Hill climbing; 1.4. Taboo search; 1.4.1. Principle; 1.4.2. Greedy descent algorithm; 1.4.3. Taboo search method; 1.4.4. Taboo list; 1.4.5. Taboo search algorithm; 1.4.6. Intensification and diversification; 1.4.7. Application examples; 1.4.7.1. Searching the smallest value on a table; 1.4.7.2. The problem of N queens; 1.5. Simulated annealing. 
505 8 |a 1.5.1. Principle of thermal annealing1.5.2. Kirkpatrick's model of thermal annealing; 1.5.3. Simulated annealing algorithm; 1.6. Tunneling; 1.6.1. Tunneling principle; 1.6.2. Types of tunneling; 1.6.2.1. Stochastic tunneling; 1.6.2.2. Tunneling with penalties; 1.6.3. Tunneling algorithm; 1.7. GRASP methods; 2: Metaheuristics -- Global Methods; 2.1. Principle of evolutionary metaheuristics; 2.2. Genetic algorithms; 2.2.1. Biology breviary; 2.2.2. Features of genetic algorithms; 2.2.2.1. Genetic operations; 2.2.2.2. Inheritors viability; 2.2.2.3. Selection for reproduction. 
505 8 |a 2.3.3. Hill climbing by group of alpinists2.4. Optimization by ant colonies; 2.4.1. Ant colonies; 2.4.1.1. Natural ants; 2.4.1.2. Aspects inspired from natural ants; 2.4.1.3. Features developed for the artificial ants; 2.4.2. Basic optimization algorithm by ant colonies; 2.4.3. Pheromone trail update; 2.4.3.1. Adaptive delayed update; 2.4.3.2. On-line update; 2.4.3.3. Update through elitist strategy; 2.4.3.4. Update by ants ranking; 2.4.4. Systemic ant colony algorithm; 2.4.5. Traveling salesman example; 2.5. Particle swarm optimization; 2.5.1. Basic metaheuristic; 2.5.1.1. Principle. 
505 8 |a 2.5.1.2. Particles dynamical model2.5.1.3. Selecting the informants; 2.5.2. Standard PSO algorithm; 2.5.3. Adaptive PSO algorithm with evolutionary strategy; 2.5.4. Fireflies algorithm; 2.5.4.1. Principle; 2.5.4.2. Dynamical model of fireflies behavior; 2.5.4.3. Standard fireflies algorithm; 2.5.5. Bats algorithm; 2.5.5.1. Principle; 2.5.5.2. Dynamical model of bats behavior; 2.5.5.3. Standard bats algorithm; 2.5.6. Bees algorithm; 2.5.6.1. Principle; 2.5.6.2. Dynamical and cooperative model of bees' behavior; 2.5.6.3. Standard bee algorithm; 2.5.7. Multivariable prediction by PSO. 
500 |a 2.6. Optimization by harmony search. 
520 |a The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU's FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods o. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical optimization. 
650 0 |a Systems engineering. 
650 0 |a Engineering mathematics. 
650 4 |a Engineering mathematics. 
650 4 |a Mathematical optimization. 
650 4 |a Program transformation (Computer programming) 
650 6 |a Optimisation mathématique. 
650 6 |a Ingénierie des systèmes. 
650 6 |a Mathématiques de l'ingénieur. 
650 7 |a systems engineering.  |2 aat 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Systems engineering  |2 fast 
700 1 |a Borne, Pierre. 
700 1 |a Popescu, Dumitru. 
700 1 |a Filip, Florin Gheorghe. 
700 1 |a El Kamel, Abdelkader. 
758 |i has work:  |a Optimization in engineering sciences (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFMh36TqpjpykWmfVQxkpd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Stefanoiu, Dan.  |t Optimization in Engineering Sciences : Approximate and Metaheuristic Methods.  |d Hoboken : Wiley, ©2014  |z 9781848214989 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1830128  |z Texto completo 
880 8 |6 505-01/(S  |a 2.2.2.3.1. Selection by fitness2.2.2.3.2. Selection by σ-normalization; 2.2.2.3.3. Selection by Boltzmann's law; 2.2.2.3.4. Selection by ranking; 2.2.2.3.5. Selection by tournament; 2.2.2.3.6. Elitist selection; 2.2.2.4. Selection for survival; 2.2.2.4.1. Generational selection; 2.2.2.4.2. Elitist selection; 2.2.2.4.3. Generational elitist selection; 2.2.3. General structure of a GA; 2.2.4. On the convergence of GA; 2.2.5. How to implement a genetic algorithm; 2.3. Hill climbing by evolutionary strategies; 2.3.1. Climbing by the steepest ascent; 2.3.2. Climbing by the next ascent. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1830128 
994 |a 92  |b IZTAP