|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn894791373 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
141108s2014 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d DEBSZ
|d OCLCQ
|d ZCU
|d MERUC
|d ICG
|d OCLCF
|d OCLCO
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781118648773
|
020 |
|
|
|a 1118648773
|
029 |
1 |
|
|a DEBSZ
|b 431817383
|
029 |
1 |
|
|a DEBBG
|b BV044071196
|
029 |
1 |
|
|a AU@
|b 000056030776
|
035 |
|
|
|a (OCoLC)894791373
|
050 |
|
4 |
|a QA279
|
050 |
|
4 |
|a QA331.7
|
082 |
0 |
4 |
|a 515.9
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Stefanoiu, Dan.
|
245 |
1 |
0 |
|a Optimization in Engineering Sciences :
|b Approximate and Metaheuristic Methods.
|
260 |
|
|
|a Hoboken :
|b Wiley,
|c 2014.
|
300 |
|
|
|a 1 online resource (446 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Preface; Acknowledgments; 1: Metaheuristics -- Local Methods; 1.1. Overview; 1.2. Monte Carlo principle; 1.3. Hill climbing; 1.4. Taboo search; 1.4.1. Principle; 1.4.2. Greedy descent algorithm; 1.4.3. Taboo search method; 1.4.4. Taboo list; 1.4.5. Taboo search algorithm; 1.4.6. Intensification and diversification; 1.4.7. Application examples; 1.4.7.1. Searching the smallest value on a table; 1.4.7.2. The problem of N queens; 1.5. Simulated annealing.
|
505 |
8 |
|
|a 1.5.1. Principle of thermal annealing1.5.2. Kirkpatrick's model of thermal annealing; 1.5.3. Simulated annealing algorithm; 1.6. Tunneling; 1.6.1. Tunneling principle; 1.6.2. Types of tunneling; 1.6.2.1. Stochastic tunneling; 1.6.2.2. Tunneling with penalties; 1.6.3. Tunneling algorithm; 1.7. GRASP methods; 2: Metaheuristics -- Global Methods; 2.1. Principle of evolutionary metaheuristics; 2.2. Genetic algorithms; 2.2.1. Biology breviary; 2.2.2. Features of genetic algorithms; 2.2.2.1. Genetic operations; 2.2.2.2. Inheritors viability; 2.2.2.3. Selection for reproduction.
|
505 |
8 |
|
|a 2.3.3. Hill climbing by group of alpinists2.4. Optimization by ant colonies; 2.4.1. Ant colonies; 2.4.1.1. Natural ants; 2.4.1.2. Aspects inspired from natural ants; 2.4.1.3. Features developed for the artificial ants; 2.4.2. Basic optimization algorithm by ant colonies; 2.4.3. Pheromone trail update; 2.4.3.1. Adaptive delayed update; 2.4.3.2. On-line update; 2.4.3.3. Update through elitist strategy; 2.4.3.4. Update by ants ranking; 2.4.4. Systemic ant colony algorithm; 2.4.5. Traveling salesman example; 2.5. Particle swarm optimization; 2.5.1. Basic metaheuristic; 2.5.1.1. Principle.
|
505 |
8 |
|
|a 2.5.1.2. Particles dynamical model2.5.1.3. Selecting the informants; 2.5.2. Standard PSO algorithm; 2.5.3. Adaptive PSO algorithm with evolutionary strategy; 2.5.4. Fireflies algorithm; 2.5.4.1. Principle; 2.5.4.2. Dynamical model of fireflies behavior; 2.5.4.3. Standard fireflies algorithm; 2.5.5. Bats algorithm; 2.5.5.1. Principle; 2.5.5.2. Dynamical model of bats behavior; 2.5.5.3. Standard bats algorithm; 2.5.6. Bees algorithm; 2.5.6.1. Principle; 2.5.6.2. Dynamical and cooperative model of bees' behavior; 2.5.6.3. Standard bee algorithm; 2.5.7. Multivariable prediction by PSO.
|
500 |
|
|
|a 2.6. Optimization by harmony search.
|
520 |
|
|
|a The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU's FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods o.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Systems engineering.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
|
4 |
|a Engineering mathematics.
|
650 |
|
4 |
|a Mathematical optimization.
|
650 |
|
4 |
|a Program transformation (Computer programming)
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
6 |
|a Ingénierie des systèmes.
|
650 |
|
6 |
|a Mathématiques de l'ingénieur.
|
650 |
|
7 |
|a systems engineering.
|2 aat
|
650 |
|
7 |
|a Engineering mathematics
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
650 |
|
7 |
|a Systems engineering
|2 fast
|
700 |
1 |
|
|a Borne, Pierre.
|
700 |
1 |
|
|a Popescu, Dumitru.
|
700 |
1 |
|
|a Filip, Florin Gheorghe.
|
700 |
1 |
|
|a El Kamel, Abdelkader.
|
758 |
|
|
|i has work:
|a Optimization in engineering sciences (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFMh36TqpjpykWmfVQxkpd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Stefanoiu, Dan.
|t Optimization in Engineering Sciences : Approximate and Metaheuristic Methods.
|d Hoboken : Wiley, ©2014
|z 9781848214989
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1830128
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 2.2.2.3.1. Selection by fitness2.2.2.3.2. Selection by σ-normalization; 2.2.2.3.3. Selection by Boltzmann's law; 2.2.2.3.4. Selection by ranking; 2.2.2.3.5. Selection by tournament; 2.2.2.3.6. Elitist selection; 2.2.2.4. Selection for survival; 2.2.2.4.1. Generational selection; 2.2.2.4.2. Elitist selection; 2.2.2.4.3. Generational elitist selection; 2.2.3. General structure of a GA; 2.2.4. On the convergence of GA; 2.2.5. How to implement a genetic algorithm; 2.3. Hill climbing by evolutionary strategies; 2.3.1. Climbing by the steepest ascent; 2.3.2. Climbing by the next ascent.
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1830128
|
994 |
|
|
|a 92
|b IZTAP
|