Cargando…

Asymptotic behaviour of tame harmonic bundles and an application to pure twister D-modules. Part 2 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mochizuki, Takuro, 1972-
Autor Corporativo: American Mathematical Society
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2007.
Colección:Memoirs of the American Mathematical Society ; no. 870.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn893973804
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141029s2007 riu o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OCLCQ  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922981714 
020 |a 9781470404734  |q (electronic bk.) 
020 |a 1470404737  |q (electronic bk.) 
020 |z 082183942X 
020 |z 9780821839423 
029 1 |a AU@  |b 000069468980 
029 1 |a DEBSZ  |b 452551986 
035 |a (OCoLC)893973804  |z (OCoLC)922981714 
050 4 |a QA564  |b .M63 2007eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.74  |2 22 
049 |a UAMI 
100 1 |a Mochizuki, Takuro,  |d 1972-  |1 https://id.oclc.org/worldcat/entity/E39PBJfRGpw4QPg9xbvCH6B9Dq 
245 1 0 |a Asymptotic behaviour of tame harmonic bundles and an application to pure twister D-modules.  |n Part 2 /  |c Takuro Mochizuki. 
264 1 |a Providence, R.I. :  |b American Mathematical Society,  |c 2007. 
300 |a 1 online resource (565 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 870 
588 0 |a Print version record. 
505 0 |a ""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions"" 
505 8 |a 2.7. Preliminary from elementary linear algebra2.8. Preliminary from complex differential geometry -- 2.9. Preliminary from functional analysis -- 2.10. An estimate of the norms of Higgs field and the conjugate -- 2.11. Convergency of the sequence of harmonic bundles -- 2.12. Higgs field and twisted map -- Chapter 3. Preliminary for Mixed Twistor Structure -- 3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)] -- 3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)] -- 3.3. Tate objects and O(p, q) -- 3.4. Equivalence of some categories 
505 8 |a 3.5. Variation of P[sup(1)]-holomorphic bundles3.6. The twistor nilpotent orbit -- 3.7. Split polarized mixed twistor structure and the nilpotent orbit -- 3.8. The induced tuple on the divisor -- 3.9. Translation of some results due to Kashiwara, Kawai and Saito -- 3.10. R-triple in dimension 0 and twistor structure -- Chapter 4. Preliminary for Filtrations -- 4.1. Filtrations and decompositions on a vector space -- 4.2. Filtrations and decompositions on a vector bundle -- 4.3. Compatibility of the filtrations and nilpotent maps -- 4.4. Extension of splittings 
505 8 |a 4.5. Compatibility of the filtrations and nilpotent maps on the divisorsChapter 5. Some Lemmas for Generically Splitted Case -- 5.1. Filtrations -- 5.2. Compatibility of morphisms and filtrations -- Chapter 6. Model Bundles -- 6.1. Basic example I -- 6.2. Basic example II -- Part 2. Prolongation of Deformed Holomorphic Bundles -- Chapter 7. Harmonic Bundles on a Punctured Disc -- 7.1. Simpson's main estimate -- 7.2. The KMS-structure of tame harmonic bundles on a punctured disc -- 7.3. Basic comparison due to Simpson -- 7.4. Multi-valued flat sections 
505 8 |a ""7.5. The case where λ is generic""""7.6. Family of multi-valued sections""; ""7.7. Asymptotic orthogonality""; ""7.8. Maximum principle for the distance of the harmonic metrics""; ""Chapter 8. Harmonic Bundles on a Product of Punctured Discs""; ""8.1. Preliminary""; ""8.2. Simpson's Main estimate in the higher dimensional case""; ""8.3. Prolongation in the case that λ is generic""; ""8.4. Extension of holomorphic sections on a hyper plane""; ""8.5. Preliminary prolongation of ελ (Special case)""; ""8.6. Prolongation of ελ and the compatibility of the parabolic filtrations"" 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Hodge theory. 
650 0 |a D-modules. 
650 0 |a Vector bundles. 
650 0 |a Harmonic maps. 
650 6 |a Théorie de Hodge. 
650 6 |a D-modules. 
650 6 |a Fibrés vectoriels. 
650 6 |a Applications harmoniques. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a D-modules  |2 fast 
650 7 |a Harmonic maps  |2 fast 
650 7 |a Hodge theory  |2 fast 
650 7 |a Vector bundles  |2 fast 
710 2 |a American Mathematical Society. 
758 |i has work:  |a Part 2 Asymptotic behaviour of tame harmonic bundles and an application to pure twister D-modules (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtHbJq3P8HpDQW9JkYCHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Mochizuki, Takuro, 1972-  |t Asymptotic behaviour of tame harmonic bundles and an application to pure twister D-modules. Part 2  |z 082183942X  |w (DLC) 2006047813  |w (OCoLC)813544969 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 870.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114135  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114135 
938 |a EBSCOhost  |b EBSC  |n 843364 
994 |a 92  |b IZTAP