Cargando…

Topological automorphic forms /

"We apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type U(1, n-1). These cohomology theories of topological automorphic forms (TAF) are related to Shimura varieties in the same way that TMF is related to the moduli space of elliptic curves....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Behrens, Mark, 1975-
Otros Autores: Lawson, Tyler, 1977-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, [2010, 2009]
Colección:Memoirs of the American Mathematical Society ; no. 958.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn893973772
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141029s2010 riua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d COD  |d TFW  |d OSU  |d COO  |d OCLCF  |d UIU  |d E7B  |d OCLCQ  |d EBLCP  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d LEAUB  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB054063  |2 bnb 
016 7 |a 015536600  |2 Uk 
019 |a 554841700  |a 922981727  |a 1086423105 
020 |a 9781470405724  |q (electronic bk.) 
020 |a 1470405725  |q (electronic bk.) 
020 |z 9780821845394 
020 |z 082184539X 
029 1 |a AU@  |b 000062344323 
029 1 |a AU@  |b 000069468975 
029 1 |a DEBSZ  |b 452552060 
035 |a (OCoLC)893973772  |z (OCoLC)554841700  |z (OCoLC)922981727  |z (OCoLC)1086423105 
050 4 |a QA353.A9  |b B44 2010eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.9  |2 22 
049 |a UAMI 
100 1 |a Behrens, Mark,  |d 1975-  |1 https://id.oclc.org/worldcat/entity/E39PBJfGQKgwPwt68t4dtb7rbd 
245 1 0 |a Topological automorphic forms /  |c Mark Behrens, Tyler Lawson. 
264 1 |a Providence, R.I. :  |b American Mathematical Society,  |c [2010, 2009] 
264 4 |c ©2009 
300 |a 1 online resource (xxiii, 136 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 958 
500 |a "Volume 204, number 958 (second of 5 numbers)." 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- p-divisible groups -- The Honda-Tate classification -- Tate modules and level structures -- Polarizations -- Forms and involutions -- Shimura varieties of type U (1, n-1) -- Deformation theory -- Topological automorphic forms -- Relationship to automorphic forms -- Smooth G-spectra -- Operation on TAF -- Buildings -- Hypercohomology of adele groups -- K(n)-local theory -- Example: chromatic level 1. 
588 0 |a Print version record. 
520 3 |a "We apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type U(1, n-1). These cohomology theories of topological automorphic forms (TAF) are related to Shimura varieties in the same way that TMF is related to the moduli space of elliptic curves. We study the cohomology operations on these theories, and relate them to certain Hecke algebras. We compute the K(n)-local homotopy types of these cohomology theories, and determine that K(n)-locally these spectra are given by finite products of homotopy fixed point spectra of the Morava E-theory E[subscript n] by finite subgroups of the Morava stabilizer group. We construct spectra Q[subscript U](K) for compact open subgroups K of certain adele groups, generalizing the spectra Q(ℓ) studied by the first author in the modular case. We show that the spectra Q[subscript U] (K) admit finite resolutions by the spectra TAF, arising from the theory of buildings. We prove that the K(n)-localizations of the spectra Q[subscript U] (K) are finite products of homotopy fixed point spectra of En with respect to certain arithmetic subgroups of the Morava stabilizer groups, which N. Naumann has shown (in certain cases) to be dense. Thus the spectra Q[subscript U] (K) approximate the K(n)-local sphere to the same degree that the spectra Q(ℓ) approximate the K(2)-local sphere."--Page v 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Automorphic forms. 
650 0 |a Algebraic topology. 
650 0 |a Homotopy groups. 
650 0 |a Shimura varieties. 
650 6 |a Formes automorphes. 
650 6 |a Topologie algébrique. 
650 6 |a Groupes d'homotopie. 
650 6 |a Variétés de Shimura. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Automorphic forms  |2 fast 
650 7 |a Homotopy groups  |2 fast 
650 7 |a Shimura varieties  |2 fast 
650 7 |a Algebraische Topologie  |2 gnd 
650 7 |a Automorphe Form  |2 gnd 
650 7 |a Fundamentalgruppe  |2 gnd 
700 1 |a Lawson, Tyler,  |d 1977-  |1 https://id.oclc.org/worldcat/entity/E39PCjBXMyhKdddQQt9KD3XHVK 
776 0 8 |i Print version:  |a Behrens, Mark, 1975-  |t Topological automorphic forms  |z 9780821845394  |w (DLC) 2009049931  |w (OCoLC)489257121 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 958. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114143  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35006221 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114143 
938 |a ebrary  |b EBRY  |n ebr11039762 
938 |a EBSCOhost  |b EBSC  |n 843450 
938 |a YBP Library Services  |b YANK  |n 12371962 
994 |a 92  |b IZTAP