Cargando…

Topological automorphic forms /

"We apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type U(1, n-1). These cohomology theories of topological automorphic forms (TAF) are related to Shimura varieties in the same way that TMF is related to the moduli space of elliptic curves....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Behrens, Mark, 1975-
Otros Autores: Lawson, Tyler, 1977-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, [2010, 2009]
Colección:Memoirs of the American Mathematical Society ; no. 958.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"We apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type U(1, n-1). These cohomology theories of topological automorphic forms (TAF) are related to Shimura varieties in the same way that TMF is related to the moduli space of elliptic curves. We study the cohomology operations on these theories, and relate them to certain Hecke algebras. We compute the K(n)-local homotopy types of these cohomology theories, and determine that K(n)-locally these spectra are given by finite products of homotopy fixed point spectra of the Morava E-theory E[subscript n] by finite subgroups of the Morava stabilizer group. We construct spectra Q[subscript U](K) for compact open subgroups K of certain adele groups, generalizing the spectra Q(ℓ) studied by the first author in the modular case. We show that the spectra Q[subscript U] (K) admit finite resolutions by the spectra TAF, arising from the theory of buildings. We prove that the K(n)-localizations of the spectra Q[subscript U] (K) are finite products of homotopy fixed point spectra of En with respect to certain arithmetic subgroups of the Morava stabilizer groups, which N. Naumann has shown (in certain cases) to be dense. Thus the spectra Q[subscript U] (K) approximate the K(n)-local sphere to the same degree that the spectra Q(ℓ) approximate the K(2)-local sphere."--Page v
Notas:"Volume 204, number 958 (second of 5 numbers)."
Descripción Física:1 online resource (xxiii, 136 pages) : illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:9781470405724
1470405725
ISSN:0065-9266 ;