Regularization, optimization, kernels, and support vector machines /
"Obtaining reliable models from given data is becoming increasingly important in a wide range of different applications fields including the prediction of energy consumption, complex networks, environmental modelling, biomedicine, bioinformatics, finance, process modelling, image and signal pro...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
CRC Press,
[2015]
|
Colección: | Chapman & Hall/CRC machine learning & pattern recognition series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. An equivalence between the lasso and support vector machines / Martin Jaggi
- 2. Regularized dictionary learning / Annalisa Barla, Saverio Salzo, and Alessandro Verri
- 3. Hybrid conditional gradient-smoothing algorithms with applications to sparse and low rank regularization / Andreas Argyriou, Marco Signoretto, and Johan A.K. Suykens
- 4. Nonconvex proximal splitting with computational errors / Suvrit Sra
- 5. Learning constrained task similarities in graph-regularized multi-task learning / Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso
- 6. The graph-guided group lasso for genome-wide association studies / Zi Wang and Giovanni Montana
- 7. On the convergence rate of stochastic gradient descent for strongly convex functions / Cheng Tang and Claire Monteleoni
- 8. Detecting ineffective features for nonparametric regression / Kris De Brabanter, Paola Gloria Ferrario, and László Györfi
- 9. Quadratic basis pursuit / Henrik Ohlsson, Allen Y. Yang, Roy Dong, Michel Verhaegen, and S. Shankar Sastry
- 10. Robust compressive sensing / Esa Ollila, Hyon-Jung Kim, and Visa Koivunen
- 11. Regularized robust portfolio estimation / Theodoros Evgeniou, Massimiliano Pontil, Diomidis Spinellis, and Nick Nassuphis
- 12. The why and how of nonnegative matrix factorization / Nicolas Gillis
- 13. Rank constrained optimization problems in computer vision / Ivan Markovsky
- 14. Low-rank tensor denoising and recovery via convex optimization / Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima
- 15. Learning sets and subspaces / Alessandro Rudi, Guillermo D. Canas, Ernesto De Vito, and Lorenzo Rosasco
- 16. Output kernel learning methods / Francesco Dinuzzo, Cheng Soon Ong, and Kenji Fukumizu
- 17. Kernel based identification of systems with multiple outputs using nuclear norm regularization / Tillmann Falck, Bart De Moor, and Johan A.K. Suykens
- 18. Kernel methods for image denoising / Pantelis Bouboulis and Sergios Theodoridis
- 19. Single-source domain adaptation with target and conditional shift / Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang, Zhi-Hua Zhou, and Claudio Persello
- 20. Multi-layer support vector machines / Marco A. Wiering and Lambert R.B. Schomaker
- 21. Online regression with kernels / Steven Van Vaerenbergh and Ignacio Santamaría.