Cargando…

Regularization, optimization, kernels, and support vector machines /

"Obtaining reliable models from given data is becoming increasingly important in a wide range of different applications fields including the prediction of energy consumption, complex networks, environmental modelling, biomedicine, bioinformatics, finance, process modelling, image and signal pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: ROKS (Workshop) Leuven, Belgium)
Otros Autores: Suykens, Johan A. K. (Editor ), Signoretto, Marco (Editor ), Argyriou, Andreas (Editor )
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2015]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn893735715
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 141025t20152015flua ob 101 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d N$T  |d CUS  |d OCLCO  |d N$T  |d COO  |d WAU  |d YDXCP  |d CAUOI  |d CRCPR  |d E7B  |d OSU  |d S4S  |d UMI  |d WAU  |d OCLCF  |d WAU  |d DEBSZ  |d VLB  |d DEBBG  |d OCL  |d OCLCO  |d MERUC  |d CEF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO  |d VT2  |d SFB  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d PUL 
019 |a 896597401  |a 896840233  |a 900464549  |a 903239561  |a 1156352099  |a 1175718603 
020 |a 9781482241402  |q (electronic bk.) 
020 |a 1482241404  |q (electronic bk.) 
020 |a 9781322638096  |q (MyiLibrary) 
020 |a 1322638098  |q (MyiLibrary) 
020 |a 0429076126 
020 |a 9780429076121 
020 |z 1482241390 
020 |z 9781482241396 
029 1 |a AU@  |b 000053968155 
029 1 |a CHBIS  |b 010876998 
029 1 |a CHVBK  |b 480381836 
029 1 |a DEBBG  |b BV042490758 
029 1 |a DEBBG  |b BV043608800 
029 1 |a DEBSZ  |b 426974611 
029 1 |a DEBSZ  |b 434839361 
029 1 |a DEBSZ  |b 445557990 
029 1 |a DEBSZ  |b 462986721 
029 1 |a GBVCP  |b 882844237 
035 |a (OCoLC)893735715  |z (OCoLC)896597401  |z (OCoLC)896840233  |z (OCoLC)900464549  |z (OCoLC)903239561  |z (OCoLC)1156352099  |z (OCoLC)1175718603 
037 |a CL0500000532  |b Safari Books Online 
041 7 |a eng  |2 iso639-3 
050 4 |a QA401  |b .R56 2015eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.8  |a 511/.8 
084 |a COM021030  |a COM037000  |a TEC007000  |2 bisacsh 
049 |a UAMI 
111 2 |a ROKS (Workshop)  |d (2013 :  |c Leuven, Belgium),  |j author. 
245 1 0 |a Regularization, optimization, kernels, and support vector machines /  |c edited by Johan A.K. Suykens, Marco Signoretto, Andreas Argyriou. 
264 1 |a Boca Raton :  |b CRC Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xvii, 522 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC machine learning & pattern recognition series 
500 |a "A Chapman and Hall book." 
504 |a Includes bibliographical references and index. 
520 |a "Obtaining reliable models from given data is becoming increasingly important in a wide range of different applications fields including the prediction of energy consumption, complex networks, environmental modelling, biomedicine, bioinformatics, finance, process modelling, image and signal processing, brain-computer interfaces, and others. In data-driven modelling approaches one has witnessed considerable progress in the understanding of estimating flexible nonlinear models, learning and generalization aspects, optimization methods, and structured modelling. One area of high impact both in theory and applications is kernel methods and support vector machines. Optimization problems, learning, and representations of models are key ingredients in these methods. On the other hand, considerable progress has also been made on regularization of parametric models, including methods for compressed sensing and sparsity, where convex optimization plays an important role. At the international workshop ROKS 2013 Leuven, 1 July 8-10, 2013, researchers from diverse fields were meeting on the theory and applications of regularization, optimization, kernels, and support vector machines. At this occasion the present book has been edited as a follow-up to this event, with a variety of invited contributions from presenters and scientific committee members. It is a collection of recent progress and advanced contributions on these topics, addressing methods including ..."--  |c Provided by publisher 
505 0 0 |g 1.  |t An equivalence between the lasso and support vector machines /  |r Martin Jaggi --  |g 2.  |t Regularized dictionary learning /  |r Annalisa Barla, Saverio Salzo, and Alessandro Verri --  |g 3.  |t Hybrid conditional gradient-smoothing algorithms with applications to sparse and low rank regularization /  |r Andreas Argyriou, Marco Signoretto, and Johan A.K. Suykens --  |g 4.  |t Nonconvex proximal splitting with computational errors /  |r Suvrit Sra --  |g 5.  |t Learning constrained task similarities in graph-regularized multi-task learning /  |r Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso --  |g 6.  |t The graph-guided group lasso for genome-wide association studies /  |r Zi Wang and Giovanni Montana --  |g 7.  |t On the convergence rate of stochastic gradient descent for strongly convex functions /  |r Cheng Tang and Claire Monteleoni --  |g 8.  |t Detecting ineffective features for nonparametric regression /  |r Kris De Brabanter, Paola Gloria Ferrario, and László Györfi --  |g 9.  |t Quadratic basis pursuit /  |r Henrik Ohlsson, Allen Y. Yang, Roy Dong, Michel Verhaegen, and S. Shankar Sastry --  |g 10.  |t Robust compressive sensing /  |r Esa Ollila, Hyon-Jung Kim, and Visa Koivunen --  |g 11.  |t Regularized robust portfolio estimation /  |r Theodoros Evgeniou, Massimiliano Pontil, Diomidis Spinellis, and Nick Nassuphis --  |g 12.  |t The why and how of nonnegative matrix factorization /  |r Nicolas Gillis --  |g 13.  |t Rank constrained optimization problems in computer vision /  |r Ivan Markovsky --  |g 14.  |t Low-rank tensor denoising and recovery via convex optimization /  |r Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima --  |g 15.  |t Learning sets and subspaces /  |r Alessandro Rudi, Guillermo D. Canas, Ernesto De Vito, and Lorenzo Rosasco --  |g 16.  |t Output kernel learning methods /  |r Francesco Dinuzzo, Cheng Soon Ong, and Kenji Fukumizu --  |g 17.  |t Kernel based identification of systems with multiple outputs using nuclear norm regularization /  |r Tillmann Falck, Bart De Moor, and Johan A.K. Suykens --  |g 18.  |t Kernel methods for image denoising /  |r Pantelis Bouboulis and Sergios Theodoridis --  |g 19.  |t Single-source domain adaptation with target and conditional shift /  |r Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang, Zhi-Hua Zhou, and Claudio Persello --  |g 20.  |t Multi-layer support vector machines /  |r Marco A. Wiering and Lambert R.B. Schomaker --  |g 21.  |t Online regression with kernels /  |r Steven Van Vaerenbergh and Ignacio Santamaría. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical models  |v Congresses. 
650 0 |a Mathematical statistics  |v Congresses. 
650 6 |a Modèles mathématiques  |v Congrès. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Mathematical models  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
655 0 |a Electronic books. 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
700 1 |a Suykens, Johan A. K.,  |e editor. 
700 1 |a Signoretto, Marco,  |e editor. 
700 1 |a Argyriou, Andreas,  |e editor. 
758 |i has work:  |a Regularization, optimization, kernels, and support vector machines (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFWWQkyX6hXTcvK3dvqWjC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a ROKS (Workshop) (2013 : Leuven, Belgium).  |t Regularization, optimization, kernels, and support vector machines.  |d Boca Raton : CRC Press, [2015]  |z 9781482241396  |w (DLC) 2014034076  |w (OCoLC)890912544 
830 0 |a Chapman & Hall/CRC machine learning & pattern recognition series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1674068  |z Texto completo 
938 |a CRC Press  |b CRCP  |n CAH0KE26301PDF 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1674068 
938 |a ebrary  |b EBRY  |n ebr10956024 
938 |a EBSCOhost  |b EBSC  |n 873856 
938 |a YBP Library Services  |b YANK  |n 15915796 
938 |a YBP Library Services  |b YANK  |n 11772303 
994 |a 92  |b IZTAP