Cargando…

Ablative thermal protection systems modeling /

This book explains the history of ablative materials and looks into the future of its design process. Topics include: modeling based on small physics scales; thermodynamics and transport properties; gas kinetics; radiative transfer; physical and chemical reactions (homogeneous and heterogeneous); fl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Duffa, Georges (Autor)
Autor Corporativo: American Institute of Aeronautics and Astronautics (Contribuidor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Reston, Virginia : American Institute of Aeronautics and Astronautics, Inc., [2013]
Colección:AIAA education series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • CONTENTS
  • PREFACE
  • ACKNOWLEDGMENTS
  • NOMENCLATURE
  • Chapter 1 Thermal Protection System Conception
  • 1.1 Planetary Reentry
  • 1.2 Orders of Magnitude
  • 1.3 Major Classes of Materials for Thermal Protection Systems
  • 1.4 Physical Problems
  • Chapter 2 Conservation Laws for a Multispecies Gaseous Medium
  • 2.1 Introduction
  • 2.2 Conservation Laws
  • 2.3 Diffusion in Neutral Medium
  • 2.4 Diffusion in Weakly Charged Media
  • 2.5 Calculation of Transport Coefficients
  • 2.6 Medium in Thermodynamic Nonequilibrium
  • Chapter 3 Elementary Chemical Reactions Modeling3.1 Gaseous Reactions
  • 3.2 Heterogeneous Reactions
  • 3.3 Relationship Between Homogeneous and Heterogeneous Reactions
  • Chapter 4 Approximate Methods
  • 4.1 Introduction
  • 4.2 Reactive Laminar Boundary Layers
  • 4.3 Injection (Blowing or Blocking) Coefficient
  • 4.4 The Couette Problem Analogy
  • 4.5 Approximate Calculation of Stagnation Point Heat Flux
  • 4.6 Mass and Energy Balance at Wall
  • 4.7 Steady State Ablation
  • Chapter 5 Ablation of Carbon
  • 5.1 Oxidation
  • 5.2 Reactions with Nitrogen
  • 5.3 Sublimation5.4 Relations of Dependence
  • 5.5 Reaction Kinetics
  • 5.6 Homogeneous Reactions
  • 5.7 Example: Homogeneous Medium
  • 5.8 Partition of Energy
  • 5.9 Relation Between Incident Flux and Ablation
  • 5.10 Precision of the Ablation Model
  • 5.11 Example of Calculation: A Test with Constant Upstream Conditions
  • Chapter 6 Roughness Formation
  • 6.1 General Considerations
  • 6.2 Scales of the Problem
  • 6.3 Reactivity of a Composite Material
  • 6.4 Roughness Formation
  • 6.5 Applications
  • Chapter 7 Turbulence and Laminarâ€? Turbulent Transition
  • 7.1 Coupling Between Turbulence and Surface State7.2 Nonlocal Effects of Turbulence
  • 7.3 Coupling Between Turbulence and Chemical Reactions
  • 7.4 Laminarâ€?Turbulent Transition
  • Chapter 8 Pyrolysis and Pyrolyzable Materials
  • 8.1 A Simple Example: PTFE
  • 8.2 Phenolic Resin
  • 8.3 The General Model
  • 8.4 The Different Levels of Solutions
  • 8.5 Transport Properties
  • 8.6 Application Example
  • 8.7 Ablation of Carbon Phenolics
  • Chapter 9 Materials Developing a Liquid Layer
  • 9.1 Hydrodynamics of the Liquid Layer
  • 9.2 Silicaâ€?Resin Materials
  • 9.1 Hydrodynamics of the Liquid Layer9.2 Silicaâ€?Resin Materials
  • Chapter 10 Radiation
  • 10.1 Introduction
  • 10.2 Radiative Transfer Equation
  • 10.3 Effects of Coupling Between Flow and Radiation
  • 10.4 Radiation in Porous Media
  • Chapter 11 Erosion by Particle Impact
  • 11.1 Introduction: Phenomenology
  • 11.2 Atmospheres
  • 11.3 Effect of Flow on the Particles
  • 11.4 Effect of Particles on the Flow
  • 11.5 Particleâ€?Wall Interaction
  • 11.6 Coupling with Ablation
  • 11.7 Discussion
  • Chapter 12 Testing and Specific Test Facilities