Cargando…

Ranges of Bimodule Projections and Conditional Expectations.

The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an idempotent e in R) is investigated here in the context of Banach and C*-algebras. We propose a general algebraic approach which includes the notion of r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pluta, Robert
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newcastle upon Tyne : Cambridge Scholars Publishing, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBOOKCENTRAL_ocn892243553
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141004s2013 xx ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d E7B  |d YDXCP  |d IDEBK  |d OCLCF  |d K6U  |d COCUF  |d CCO  |d PIFFA  |d FVL  |d N$T  |d ZCU  |d AGLDB  |d MERUC  |d OCLCQ  |d U3W  |d D6H  |d STF  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d OCLCO  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d CN6UV  |d ELBRO  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
016 7 |a 016325636  |2 Uk 
019 |a 893189492  |a 1011000899  |a 1086984881  |a 1259130840  |a 1264752260 
020 |a 1322180512  |q (electronic bk.) 
020 |a 9781322180519  |q (electronic bk.) 
020 |a 9781443867863  |q (electronic bk.) 
020 |a 1443867861  |q (electronic bk.) 
020 |z 9781443846127 
020 |z 1443846120 
029 1 |a AU@  |b 000056019978 
029 1 |a DEBBG  |b BV044070603 
029 1 |a DEBSZ  |b 49315101X 
035 |a (OCoLC)892243553  |z (OCoLC)893189492  |z (OCoLC)1011000899  |z (OCoLC)1086984881  |z (OCoLC)1259130840  |z (OCoLC)1264752260 
037 |a 649315  |b MIL 
050 4 |a QA155 .P58 2013 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512  |a 512.25 
049 |a UAMI 
100 1 |a Pluta, Robert. 
245 1 0 |a Ranges of Bimodule Projections and Conditional Expectations. 
260 |a Newcastle upon Tyne :  |b Cambridge Scholars Publishing,  |c 2013. 
300 |a 1 online resource (212 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a ACKNOWLEDGEMENTS; CHAPTER 1 -- INTRODUCTION; CHAPTER 2 -- GENERAL THEORY OF CORNER RINGS; 2.1 Definitions and Main Theorems; 2.2 Uniqueness of Complements; 2.3 Annihilators and Split Corners; 2.4 Graphs of Ring Homomorphisms; 2.5 Q is a Dense Corner in R; 2.6 Necessary Condition: Inverse Closure; 2.7 Corners in Regular Rings; 2.8 Corners in Rings with Involution; CHAPTER 3 -- CORNER ALGEBRAS; 3.1 Definitions and Characterization; 3.2 Closed and Non-closed Complements; 3.3 Unitalization; 3.4 Invertibility of 1 + E(x∗x); 3.5 Dense Corners are Unital 
505 8 |a 3.6 On the Self-adjointness of Corners3.7 Symmetrised Lam Conditional Expectations; 3.8 Hereditary C∗-subalgebras; 3.9 Semisimplicity of Corners in C∗-algebras; 3.10 Ideals and Some Application of Annihilators; 3.11 Separating Spaces; 3.12 Corners Containing Diagonals; 3.13 Corners Containing Diagonals II; 3.14 Spectral Radius; 3.15 Peirce Corners in Prime Algebras; 3.16 Examples of Conditional Expectations; CHAPTER 4 -- TERNARY CORNERS; 4.1 Definitions and Characterization; 4.2 Descent and Transitivity; 4.3 Graphs of TRO Homomorphisms; 4.4 The Finite-dimensional Case and Injectivity 
505 8 |a 4.5 Row and Column Spaces4.6 Characterization of Row and Column Spaces; 4.7 Tripotents and Peirce Spaces; CHAPTER 5 -- CORNERS IN C (K); 5.1 Retracts in Compact and Locally Compact Spaces; 5.2 Sigma-algebra of Sets and Commutative Algebras; 5.3 Algebras of Continuous Functions and Measures; 5.4 Common Zeros; 5.5 Discontinuous Conditional Expectations; 5.6 Review of Results on Automatic Continuity; 5.7 Closure Question -- Commutative Case; 5.8 Existence of Bounded Conditional Expectations -- Commutative Case; 5.9 Remarks on the Non-commutative Case; CHAPTER 6 -- ADDENDUM. 
505 8 |a 6.1 Complete Boundedness of Bimodule Maps6.2 AW∗-TROs; 6.3 Type Decomposition of AW∗-TROs; BIBLIOGRAPHY 
520 |a The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an idempotent e in R) is investigated here in the context of Banach and C*-algebras. We propose a general algebraic approach which includes the notion of ranges of (completely) contractive conditional expectations on C*-algebras and on ternary rings of operators, and we investigate when topological properties are consequences of the algebraic assumpt ... 
504 |a Includes bibliographical references (pages 194-204). 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebra. 
650 0 |a Rings (Algebra) 
650 6 |a Algèbre. 
650 6 |a Anneaux (Algèbre) 
650 7 |a algebra.  |2 aat 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Algebra  |2 fast 
650 7 |a Rings (Algebra)  |2 fast 
758 |i has work:  |a Ranges of Bimodule Projections and Conditional Expectations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD363K37kbBJ8r3RVcFvF4y  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pluta, Robert.  |t Ranges of Bimodule Projections and Conditional Expectations.  |d Newcastle upon Tyne : Cambridge Scholars Publishing, ©2013  |z 9781443846127 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1800487  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27136166 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1800487 
938 |a ebrary  |b EBRY  |n ebr10949423 
938 |a EBSCOhost  |b EBSC  |n 860104 
938 |a eLibro  |b ELBO  |n ELB151109 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29889368 
938 |a YBP Library Services  |b YANK  |n 12094562 
994 |a 92  |b IZTAP