Haptic Feedback Teleoperation of Optical Tweezers /
The authors of this book provide the first review of haptic optical tweezers, a new technique which brings together force feedback teleoperation and optical tweezers. This technique allows users to explore the microworld by sensing and exerting piconewton-scale forces with trapped microspheres. The...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE ; Wiley,
2014.
|
Colección: | Control, systems and industrial engineering series
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover page; Half-title page; Title page; Copyright page; Contents; Preface; Introduction; 1: Introduction to Haptic Optical Tweezers; 1.1. Introduction; 1.2. A dexterous experimental platform; 1.2.1. A dexterous micromanipulation technique; 1.2.2. A dexterous user interaction for micromanipulation; 1.2.3. Pioneering works; 1.3. Interactive optical tweezers; 1.3.1. Displacement techniques; 1.3.2. Impact of the laser deflection; 1.3.3. Measurement techniques; 1.4. Specific designs for haptic interactions; 1.4.1. Temporal sharing; 1.4.2. Spatial sharing; 1.5. Discussion; 1.6. Conclusion.
- 1.7. Bibliography2: High-speed Vision: From Frame-based to Event-based; 2.1. High-speed cameras; 2.1.1. Image data acquisition; 2.1.2. Image data transmission; 2.1.3. Image data processing; 2.2. Silicon retinas; 2.2.1. Neuromorphic engineering; 2.2.2. Dynamic vision sensor (DVS); 2.2.3. Asynchronous time-based image sensor; 2.3. The advantages of asynchronous event-based vision; 2.3.1. Frame-based methodology; 2.3.2. Event-based acquisition; 2.3.3. Event-based processing; 2.4. The fundamentals of event-based computation; 2.5. State of the art of silicon retina applications.
- 2.6. High-speed vision in robotics2.6.1. Examples; 2.6.2. Difficulties; 2.7. Necessity of high-speed vision in microrobotics; 2.7.1. Automatic control of a microrobot; 2.7.2. Teleoperated micromanipulation; 2.7.3. Two concrete applications; 2.7.3.1. Haptic optical tweezers; 2.7.3.2. Haptic virtual assistance of a microgripper system; 2.8. Bibliography; 3: Asynchronous Event-based 2D Microsphere Tracking; 3.1. Reliable haptic optical tweezers; 3.2. State of the art of high-speed microparticle tracking; 3.2.1. Position detection devices; 3.2.2. Candidate algorithms.
- 3.3. Microsphere tracking using DVS3.3.1. Event-based continuous Hough transform; 3.3.2. Multiple microsphere tracking; 3.3.2.1. Setup; 3.3.2.2. Experiments; 3.3.3. Brownian motion detection; 3.4. 2D haptic feedback micromanipulation with optical tweezers; 3.4.1. Strategy of haptic coupling with optical tweezers; 3.4.2. Haptic feedback optical tweezer system setup; 3.4.3. First experiments on force sensing in the microworld; 3.4.3.1. Object touching; 3.4.3.2. Surface exploration; 3.4.4. A comparison of frame-based and event-based vision in micromanipulation; 3.5. Conclusions.
- 3.6. Bibliography4: Asynchronous Event-based 3D Microsphere Tracking; 4.1. 3D sphere tracking methods; 4.1.1. Defocus; 4.1.2. Intensity average on frame-based images; 4.1.3. Polarity integration; 4.1.4. Extension of continuous Hough transform; 4.1.5. Robust circle fitting; 4.1.6. Summary of different methods; 4.2. 3D haptic feedback teleoperation of optical tweezers; 4.2.1. Configuration and method; 4.2.2. Z-axis force feedback; 4.3. Haptic feedback on multitrap optical tweezers; 4.3.1. Time multiplexing multitrapping by galvanometer; 4.3.2. Events-trap correspondence.