Cargando…

IPython Interactive Computing and Visualization Cookbook.

With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rossant, Cyrille
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007a 4500
001 EBOOKCENTRAL_ocn892044237
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 141003s2014 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d OCLCQ  |d N$T  |d E7B  |d YDXCP  |d OCLCQ  |d COO  |d OCLCF  |d OCLCQ  |d STF  |d B24X7  |d TEFOD  |d OCLCQ  |d FEM  |d AGLDB  |d OCLCQ  |d ICA  |d K6U  |d OCLCQ  |d CCO  |d LIP  |d PIFAG  |d FVL  |d ZCU  |d XFH  |d MERUC  |d OCLCQ  |d U3W  |d REB  |d D6H  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 962007839  |a 968009749  |a 969009113  |a 994402861  |a 1259269434 
020 |a 9781783284825  |q (electronic bk.) 
020 |a 178328482X  |q (electronic bk.) 
020 |a 1322166226  |q (electronic bk.) 
020 |a 9781322166223  |q (electronic bk.) 
020 |z 9781783284818 
020 |z 1783284811 
029 1 |a AU@  |b 000056019056 
029 1 |a CHNEW  |b 000695429 
029 1 |a CHNEW  |b 000695436 
029 1 |a CHNEW  |b 000887084 
029 1 |a CHVBK  |b 374460019 
029 1 |a DEBBG  |b BV043608076 
029 1 |a DEBSZ  |b 484729195 
035 |a (OCoLC)892044237  |z (OCoLC)962007839  |z (OCoLC)968009749  |z (OCoLC)969009113  |z (OCoLC)994402861  |z (OCoLC)1259269434 
037 |a BEFEA1C1-B37C-4F89-846E-84DA822027CD  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b R6773 2013eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.78  |2 23 
049 |a UAMI 
100 1 |a Rossant, Cyrille. 
245 1 0 |a IPython Interactive Computing and Visualization Cookbook. 
260 |b Packt Publishing,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Print version record. 
520 |a With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality, readable, and well-tested programs; profiling and optimizing your code, and conducting reproducible interactive computing experiments; master all of the new features of the IPython notebook, including the interactive HTML/JavaScript widgets; analyze data with Bayesian and frequentist statistics (Pandas, PyMC, and R), and learn from data with machine learning (scikit-learn); gain insight into signals, images, and sounds with SciPy, scikit-image, and OpenCV; write blazingly fast Python programs with NumPy, PyTables, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA and OpenCL), parallel IPython, MPI, and many more. --  |c Edited summary from book. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction. 
505 8 |a Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar. 
505 8 |a Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying. 
505 8 |a Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython. 
505 8 |a Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python (Computer program language) 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
758 |i has work:  |a IPython interactive computing and visualization cookbook (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGTfgDmK3Y9bt4qcmB9GVC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Rossant, Cyrillel.  |t IPython interactive computing and visualization cookbook.  |d Birmingham, [England] : Packt Publishing, ©2014  |h 494 pages  |z 9781783284818 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1644014  |z Texto completo 
938 |a Books 24x7  |b B247  |n bks00093174 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1644014 
938 |a ebrary  |b EBRY  |n ebr10944918 
938 |a EBSCOhost  |b EBSC  |n 855905 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29855676 
938 |a Internet Archive  |b INAR  |n ipythoninteracti0000ross 
938 |a YBP Library Services  |b YANK  |n 12093931 
994 |a 92  |b IZTAP