Cargando…

Fundamentals of Silicon Carbide Technology : Growth, Characterization, Devices and Applications.

A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applicationsBased on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs)...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kimoto, Tsunenobu
Otros Autores: Cooper, James A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; About the Authors; Preface; Chapter 1 Introduction; 1.1 Progress in Electronics; 1.2 Features and Brief History of Silicon Carbide; 1.2.1 Early History; 1.2.2 Innovations in SiC Crystal Growth; 1.2.3 Promise and Demonstration of SiC Power Devices; 1.3 Outline of This Book; References; Chapter 2 Physical Properties of Silicon Carbide; 2.1 Crystal Structure; 2.2 Electrical and Optical Properties; 2.2.1 Band Structure; 2.2.2 Optical Absorption Coefficient and Refractive Index; 2.2.3 Impurity Doping and Carrier Density; 2.2.4 Mobility; 2.2.5 Drift Velocity.
  • 2.2.6 Breakdown Electric Field Strength2.3 Thermal and Mechanical Properties; 2.3.1 Thermal Conductivity; 2.3.2 Phonons; 2.3.3 Hardness and Mechanical Properties; 2.4 Summary; References; Chapter 3 Bulk Growth of Silicon Carbide; 3.1 Sublimation Growth; 3.1.1 Phase Diagram of Si-C; 3.1.2 Basic Phenomena Occurring during the Sublimation (Physical Vapor Transport) Method; 3.1.3 Modeling and Simulation; 3.2 Polytype Control in Sublimation Growth; 3.3 Defect Evolution and Reduction in Sublimation Growth; 3.3.1 Stacking Faults; 3.3.2 Micropipe Defects; 3.3.3 Threading Screw Dislocation.
  • 3.3.4 Threading Edge Dislocation and Basal Plane Dislocation3.3.5 Defect Reduction; 3.4 Doping Control in Sublimation Growth; 3.4.1 Impurity Incorporation; 3.4.2 n-Type Doping; 3.4.3 p-Type Doping; 3.4.4 Semi-Insulating; 3.5 High-Temperature Chemical Vapor Deposition; 3.6 Solution Growth; 3.7 3C-SiC Wafers Grown by Chemical Vapor Deposition; 3.8 Wafering and Polishing; 3.9 Summary; References; Chapter 4 Epitaxial Growth of Silicon Carbide; 4.1 Fundamentals of SiC Homoepitaxy; 4.1.1 Polytype Replication in SiC Epitaxy; 4.1.2 Theoretical Model of SiC Homoepitaxy; 4.1.3 Growth Rate and Modeling.
  • 4.1.4 Surface Morphology and Step Dynamics4.1.5 Reactor Design for SiC Epitaxy; 4.2 Doping Control in SiC CVD; 4.2.1 Background Doping; 4.2.2 n-Type Doping; 4.2.3 p-Type Doping; 4.3 Defects in SiC Epitaxial Layers; 4.3.1 Extended Defects; 4.3.2 Deep Levels; 4.4 Fast Homoepitaxy of SiC; 4.5 SiC Homoepitaxy on Non-standard Planes; 4.5.1 SiC Homoepitaxy on Nearly On-Axis {0001}; 4.5.2 SiC Homoepitaxy on Non-basal Planes; 4.5.3 Embedded Homoepitaxy of SiC; 4.6 SiC Homoepitaxy by Other Techniques; 4.7 Heteroepitaxy of 3C-SiC; 4.7.1 Heteroepitaxial Growth of 3C-SiC on Si.
  • 4.7.2 Heteroepitaxial Growth of 3C-SiC on Hexagonal SiC4.8 Summary; References; Chapter 5 Characterization Techniques and Defects in Silicon Carbide; 5.1 Characterization Techniques; 5.1.1 Photoluminescence; 5.1.2 Raman Scattering; 5.1.3 Hall Effect and Capacitance-Voltage Measurements; 5.1.4 Carrier Lifetime Measurements; 5.1.5 Detection of Extended Defects; 5.1.6 Detection of Point Defects; 5.2 Extended Defects in SiC; 5.2.1 Major Extended Defects in SiC; 5.2.2 Bipolar Degradation; 5.2.3 Effects of Extended Defects on SiC Device Performance; 5.3 Point Defects in SiC.