|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn891400001 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140822t20002000nju ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d YDXCP
|d EBLCP
|d N$T
|d DEBSZ
|d JSTOR
|d OCLCF
|d DEBBG
|d OCLCQ
|d TFW
|d COO
|d OCLCQ
|d OCLCO
|d UIU
|d COCUF
|d MOR
|d CCO
|d PIFAG
|d ZCU
|d MERUC
|d OCLCQ
|d IOG
|d DEGRU
|d U3W
|d EZ9
|d STF
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d AJS
|d QGK
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 887499496
|a 894732172
|a 961585291
|a 962644377
|a 979954521
|a 992843763
|a 1055357890
|a 1066527089
|a 1181906076
|a 1228565098
|a 1241799297
|a 1259118919
|a 1262686673
|
020 |
|
|
|a 9781400865208
|q (e-book)
|
020 |
|
|
|a 1400865204
|q (e-book)
|
020 |
|
|
|a 0691050767
|
020 |
|
|
|a 9780691050768
|
020 |
|
|
|a 0691050759
|
020 |
|
|
|a 9780691050751
|
020 |
|
|
|z 9780691050768
|
024 |
7 |
|
|a 10.1515/9781400865208
|2 doi
|
029 |
1 |
|
|a AU@
|b 000056017396
|
029 |
1 |
|
|a CHBIS
|b 010896056
|
029 |
1 |
|
|a CHVBK
|b 483394947
|
029 |
1 |
|
|a DEBBG
|b BV042524176
|
029 |
1 |
|
|a DEBBG
|b BV043155769
|
029 |
1 |
|
|a DEBBG
|b BV043782990
|
029 |
1 |
|
|a DEBBG
|b BV044069698
|
029 |
1 |
|
|a DEBSZ
|b 415193613
|
029 |
1 |
|
|a DEBSZ
|b 415420326
|
029 |
1 |
|
|a DEBSZ
|b 429938039
|
029 |
1 |
|
|a DEBSZ
|b 445582944
|
029 |
1 |
|
|a DEBSZ
|b 446781363
|
029 |
1 |
|
|a GBVCP
|b 1003789242
|
035 |
|
|
|a (OCoLC)891400001
|z (OCoLC)887499496
|z (OCoLC)894732172
|z (OCoLC)961585291
|z (OCoLC)962644377
|z (OCoLC)979954521
|z (OCoLC)992843763
|z (OCoLC)1055357890
|z (OCoLC)1066527089
|z (OCoLC)1181906076
|z (OCoLC)1228565098
|z (OCoLC)1241799297
|z (OCoLC)1259118919
|z (OCoLC)1262686673
|
037 |
|
|
|a 22573/ctt767xdd
|b JSTOR
|
050 |
|
4 |
|a QA247
|b .R83 2000eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
072 |
|
7 |
|a MAT022000
|2 bisacsh
|
072 |
|
7 |
|a MAT012010
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.74
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Rubin, Karl,
|e author.
|
245 |
1 |
0 |
|a Euler systems /
|c by Karl Rubin.
|
264 |
|
1 |
|a Princeton, New Jersey ;
|a Chichester, England :
|b Princeton University Press,
|c 2000.
|
264 |
|
4 |
|c ©2000
|
300 |
|
|
|a 1 online resource (241 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Annals of Mathematics Studies ;
|v Number 147
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic.
|
505 |
0 |
0 |
|t Frontmatter --
|t Contents --
|t Acknowledgments /
|r Rubin, Karl --
|t Introduction --
|t Chapter 1. Galois Cohomology of p-adic Representations --
|t Chapter 2. Euler Systems: Definition and Main Results --
|t Chapter 3. Examples and Applications --
|t Chapter 4. Derived Cohomology Classes --
|t Chapter 5. Bounding the Selmer Group --
|t Chapter 6. Twisting --
|t Chapter 7. Iwasawa Theory --
|t Chapter 8. Euler Systems and p-adic L-functions --
|t Chapter 9. Variants --
|t Appendix A. Linear Algebra --
|t Appendix B. Continuous Cohomology and Inverse Limits --
|t Appendix C. Cohomology of p-adic Analytic Groups --
|t Appendix D. p-adic Calculations in Cyclotomic Fields --
|t Bibliography --
|t Index of Symbols --
|t Subject Index.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Algebraic number theory.
|
650 |
|
0 |
|a p-adic numbers.
|
650 |
|
6 |
|a Théorie algébrique des nombres.
|
650 |
|
6 |
|a Nombres p-adiques.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Number Theory.
|2 bisacsh
|
650 |
|
7 |
|a Algebraic number theory
|2 fast
|
650 |
|
7 |
|a p-adic numbers
|2 fast
|
653 |
|
|
|a Abelian extension.
|
653 |
|
|
|a Abelian variety.
|
653 |
|
|
|a Absolute Galois group.
|
653 |
|
|
|a Algebraic closure.
|
653 |
|
|
|a Barry Mazur.
|
653 |
|
|
|a Big O notation.
|
653 |
|
|
|a Birch and Swinnerton-Dyer conjecture.
|
653 |
|
|
|a Cardinality.
|
653 |
|
|
|a Class field theory.
|
653 |
|
|
|a Coefficient.
|
653 |
|
|
|a Cohomology.
|
653 |
|
|
|a Complex multiplication.
|
653 |
|
|
|a Conjecture.
|
653 |
|
|
|a Corollary.
|
653 |
|
|
|a Cyclotomic field.
|
653 |
|
|
|a Dimension (vector space)
|
653 |
|
|
|a Divisibility rule.
|
653 |
|
|
|a Eigenvalues and eigenvectors.
|
653 |
|
|
|a Elliptic curve.
|
653 |
|
|
|a Error term.
|
653 |
|
|
|a Euler product.
|
653 |
|
|
|a Euler system.
|
653 |
|
|
|a Exact sequence.
|
653 |
|
|
|a Existential quantification.
|
653 |
|
|
|a Field of fractions.
|
653 |
|
|
|a Finite set.
|
653 |
|
|
|a Functional equation.
|
653 |
|
|
|a Galois cohomology.
|
653 |
|
|
|a Galois group.
|
653 |
|
|
|a Galois module.
|
653 |
|
|
|a Gauss sum.
|
653 |
|
|
|a Global field.
|
653 |
|
|
|a Heegner point.
|
653 |
|
|
|a Ideal class group.
|
653 |
|
|
|a Integer.
|
653 |
|
|
|a Inverse limit.
|
653 |
|
|
|a Inverse system.
|
653 |
|
|
|a Karl Rubin.
|
653 |
|
|
|a Local field.
|
653 |
|
|
|a Mathematical induction.
|
653 |
|
|
|a Maximal ideal.
|
653 |
|
|
|a Modular curve.
|
653 |
|
|
|a Modular elliptic curve.
|
653 |
|
|
|a Natural number.
|
653 |
|
|
|a Orthogonality.
|
653 |
|
|
|a P-adic number.
|
653 |
|
|
|a Pairing.
|
653 |
|
|
|a Principal ideal.
|
653 |
|
|
|a R-factor (crystallography)
|
653 |
|
|
|a Ralph Greenberg.
|
653 |
|
|
|a Remainder.
|
653 |
|
|
|a Residue field.
|
653 |
|
|
|a Ring of integers.
|
653 |
|
|
|a Scientific notation.
|
653 |
|
|
|a Selmer group.
|
653 |
|
|
|a Subgroup.
|
653 |
|
|
|a Tate module.
|
653 |
|
|
|a Taylor series.
|
653 |
|
|
|a Tensor product.
|
653 |
|
|
|a Theorem.
|
653 |
|
|
|a Upper and lower bounds.
|
653 |
|
|
|a Victor Kolyvagin.
|
758 |
|
|
|i has work:
|a Euler systems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCXKDJv9qhTpxBXqDKJdHhb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Rubin, Karl.
|t Euler systems.
|d Princeton, New Jersey ; Chichester, England : Princeton University Press, ©2000
|h xi, 227 pages
|k Annals of mathematics studies ; Number 147
|z 9780691050768
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 147.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1756197
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28074176
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781400865208
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1756197
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10907684
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 818441
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12033126
|
994 |
|
|
|a 92
|b IZTAP
|