Computing the homology of the lambda algebra /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1985.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 337. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""Table of Contents""; ""Chapter 1: Introduction""; ""Chapter 2: The lambda algebra""; ""2.1. The defining structure of the lambda algebra""; ""2.2. Generating tables of relations and differentials""; ""2.3. Digression: the Adem relations in the Steenrod algebra""; ""2.4. Ordering""; ""2.5. Corollaries to the structure formulas""; ""2.6. Tri-grading when p is odd""; ""2.7. The endomorphism Î?""; ""2.8. Cutting the work in half: odd endings""; ""2.9. Remarks on the image of J and vanishing lines""; ""2.10. The ""unstable"" algebras and the EHP sequence""
- 2.11. Some comments on the search for differentials2.12. The size of the lambda algebra
- Table 2.1: Actual counts, p=2, odd-ending monomials
- 2.13. Euler characteristic check
- Chapter 3: The algorithms and the Curtis table
- 3.1. Terminology
- 3.2. The tables do not include certain towers
- 3.3. Preliminary algorithm
- 3.4. Obvious tags and invisible listings
- 3.5. The LTO (leading-term-only) algorithm
- 3.6. Some perverse examples
- 3.7. Finiteness
- 3.8. Correctness
- 3.9. Shortcuts
- 3 9 1. No small target
- 3 9.2. Truncation
- ""3 9.3. Cycle initials""""3 9.4. Visible products ""; ""3.9.5. A certain pattern for p=2""; ""3.9.6. A useful pattern for p=2 or p=3""; ""3.9.7. Verticals, p=2""; ""3.9.8. Some patterns for p=3""; ""3.9.9. Verticals, p=3""; ""3.9.10. Product with λl, p=3""; ""3.10 Using extraneous information""; ""Chapter 4: Implementation and experience""; ""4.1. The SNOBOL language""; ""4.2. Stop and restart; output""; ""4.3. Choice of algorithm""; ""4.4. Time and storage constraints""; ""4.5. Data representation""; ""4.6. The sample program""; ""4.7. Execution profiles""
- 4.8. Growth rate of the calculationTable 4.1. CPU time for each t, p=2
- Table 4.2. CPU time for each t, p=3
- 4.9. Bad cases
- 4.10. Recent developments
- Figure 4.1: Snobol program, p=2
- Chapter 5: Related programs
- 5.1. The lambda algebra
- 5.2. Table-processing programs
- 5.3. Various programs for Curtis tables
- 5.4. Execution profiles
- 5.5. Product structure
- Chapter 6: The tables
- 6.1. Tables 1 and 2: Curtis tables for p=2
- 6.2. Tables 3 and 4: Curtis tables for p=3
- 6.3. Tables 5 and 6: Curtis tables for p=3, lambdas only
- Table 1: p=2, stableTable 2: p=2, Curtis table
- Table 3: p=3, stable
- Table 4: p=3, Curtis table
- Table 5: p=3 lambdas only, stable
- Table 6: p=3 lambdas only, Curtis table
- Bibliography