|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn891386275 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140908t19961996riu ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d QGK
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259130924
|
020 |
|
|
|a 9781470401597
|q (e-book)
|
020 |
|
|
|a 1470401592
|q (e-book)
|
020 |
|
|
|z 9780821804353
|
035 |
|
|
|a (OCoLC)891386275
|z (OCoLC)1259130924
|
050 |
|
4 |
|a QA380
|b .F545 1996eb
|
082 |
0 |
4 |
|a 515/.353
|2 20
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Field, Mike,
|e author.
|
245 |
1 |
0 |
|a Symmetry breaking for compact Lie groups /
|c Michael Field.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 1996.
|
264 |
|
4 |
|c ©1996
|
300 |
|
|
|a 1 online resource (185 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v Number 574
|
500 |
|
|
|a "March 1996, Volume 120, Number 574 (second of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a ""Contents""; ""1. Introduction""; ""1.1. Notes for the reader""; ""1.2. Acknowledgements""; ""2. Technical Preliminaries and Basic Notations""; ""2.1. Î?-sets and isotropy types""; ""2.2. Representations""; ""2.3. Isotropy types for representations""; ""2.4. Polynomial Invariants and Equivariants""; ""2.5. Smooth families of equivariant maps""; ""2.6. Normalized families""; ""3. Branching and invariant group orbits""; ""3.1. Relative equilibria and normal hyperbolicity""; ""3.2. Branches of relative equilibria""; ""3.3. The branching pattern""; ""3.4. Stabilities""
|
505 |
8 |
|
|a ""3.5. Branching conditions""""3.6. The signed indexed branching pattern""; ""3.7. Stable families""; ""3.8. Determinacy""; ""3.9. Strong determinacy""; ""4. Genericity theorems""; ""4.1. Semi-algebraic and semi-analytic sets""; ""4.2. Invariant and equi variant generators""; ""4.3. The variety Σ""; ""4.4. Stability theorems I: Weak regularity""; ""4.5. Stability theorems II: Regular families""; ""4.6. Determinacy""; ""4.7. Examples related to finite reflection groups""; ""5. Finitely determined bifurcation problems I""; ""5.1. The phase vector field""
|
505 |
8 |
|
|a ""5.2. The spaces A[sub(h)](Î?,V), B[sub(h)](Î?,V)""""5.3. Strong determinacy""; ""6. Finitely-determined bifurcation problems II""; ""6.1. Statement of the main theorem""; ""6.2. 2-stable relative equilibria""; ""7. Strong determinacy: Technical preliminaries""; ""7.1. Introduction""; ""7.2. Notational conventions""; ""7.3. Local geometry""; ""7.4. Weakly regular families""; ""7.5. Analytic families and solution branches""; ""7.6. Compatible parametrizations and initial exponents""; ""7.7. Remarks on the set Î?(f)""; ""7.8. The parametrization theorem""; ""7.9. The space R[sup(2)]""
|
505 |
8 |
|
|a ""7.10. Initial exponents and the space R[sup(3)]""""8. Strong determinacy: Î? finite""; ""8.1. Analytic parametrizations""; ""8.2. Estimates on eigenvalues""; ""8.3. Fractional power series""; ""8.4. Eigenvalue estimates: Analytic case""; ""8.5. Eigenvalue estimates: Smooth case""; ""8.6. Proof of Theorem 8.2.6""; ""8.7. Strong determinacy: Î? finite""; ""8.8. Formation of new branches under perturbation""; ""9. Strong determinacy: Î? compact, non-finite""; ""9.1. Polar blowing-up: Local theory""; ""9.2. Polar blowing-up: Global theory""; ""9.3. Polar blowing-up a Î?-manifold""
|
505 |
8 |
|
|a 9.4. Blowing- up9.4.1. Blowing-up along a linear subspace -- 9.4.2. Blowing-up analytic varieties -- 9.4.3. Blowing-up algebraic varieties -- 9.5. Conical sets -- 9.6. Algebraic and analytic structure of the orbit strata -- 9.7. Blowing-up representations -- 9.7.1. Analytic theory -- 9.7.2. Algebraic theory -- 9.8. A tangent and normal decomposition -- 9.9. Blowing-up arcs -- 9.10. Analytic parametrizations of solution branches -- 9.11. Lifting analytic parametrizations -- 9.12. Controlling the lifts of analytic parametrizations
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Bifurcation theory.
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
6 |
|a Théorie de la bifurcation.
|
650 |
|
6 |
|a Groupes de Lie.
|
650 |
|
7 |
|a Bifurcation theory
|2 fast
|
650 |
|
7 |
|a Lie groups
|2 fast
|
758 |
|
|
|i has work:
|a Symmetry breaking for compact Lie groups (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFRqBxJpbYWmpCJq8wPwyd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Field, Mike.
|t Symmetry breaking for compact Lie groups.
|d Providence, Rhode Island : American Mathematical Society, ©1996
|h viii, 170 pages
|k Memoirs of the American Mathematical Society ; Number 574
|x 0065-9266
|z 9780821804353
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 574.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113995
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113995
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10918948
|
994 |
|
|
|a 92
|b IZTAP
|