Shortest paths for sub-Riemannian metrics on rank-two distributions /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island, United States :
American Mathematical Society,
1995.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 118, no. 564. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Table of Contents
- 1 Introduction
- 2 Three examples
- 2.1 Riemannian geodesies
- 2.2 The Heisenberg algebra case
- 2.3 An abnormal minimizer
- 3 Notational conventions and definitions
- 3.1 Manifolds, charts, bundles, curves and arcs
- 3.2 Hamiltonian functions, Hamilton vector fields, and bicharacteristics
- 3.3 Hamiltonian lifts and characteristics
- 3.4 Distributions, admissible curves, orbits
- 3.5 Nonholonomic distributions; regularity
- 4 Abnormal extremals
- 5 Sub-Riemannian manifolds, length minimizers and extremals
- 5.1 The sub-Riemannian distance, length minimization and time optimality5.2 Extremals
- 5.3 The relationship between minimality and extremality
- 6 Regular abnormal extremals for rank-two distributions
- 6.1 The regular abnormal foliation of a rank-two distribution
- 6.2 Regular abnormal biextremals of a sub-Riemannian manifold
- 7 Local optimality of regular abnormal extremals
- 7.1 The main inequality
- 7.2 The normal form theorem
- 7.3 The optimality theorem
- 8 Strict abnormality
- 9 Some special cases
- 9.1 2- and 3-generating distributions
- 9.2 3-Regular distributions9.3 The 4- and 5-dimensional cases
- 9.4 The three-dimensional case
- 9.5 A Lie group example
- 9.6 A nonsmooth abnormal extremal
- Appendix A: The Gaveau-Brockett problem
- Appendix B: Proof of Theorem 1
- B.l: Control systems
- B.2: The Maximum Principle
- Appendix C: Local optimality of normal extremals
- Appendix D: Rigid sub-Riemannian arcs and local optimality
- Appendix E: A nonoptimality proof
- References