Filtrations on the homology of algebraic varieties /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island, United States :
American Mathematical Society,
1994.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 110, no. 529. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Introduction
- Chapter 1. Questions and Speculations
- 1.1. The nitrations
- 1.2. Dependence on the projective imbedding
- 1.3. The Strong Lefschetz mapping in Lawson Homology
- 1.4. Equivalence relations on algebraic cycles
- 1.5. Stabilized homotopy of moduli spaces
- 1.6. Joins and Resultants
- Chapter 2. Abelian monoid varieties
- 2.1. Monoids
- 2.2. Limits
- 2.3. Directed systems attached to an abelian monoid
- 2.4. Limits of covariant functors
- 2.5. Bi-algebras
- 2.6. Abelian group completions
- 2.7. Constructing limH*(m) from H*(M)2.8. Base points
- 2.9. Primitive elements
- 2.10. Mixed Hodge Structure
- Chapter 3. Chow varieties and Lawson homology
- 3.1. The Chow variety
- 3.2. Functoriality and Chow varieties
- 3.3. Functoriality: algebraic context
- 3.4. The additive monoid
- 3.5. Lawson homology
- Chapter 4. Correspondences and Lawson homology
- 4.1. Correspondence homomorphisms
- 4.2. The Chow correspondence homomorphism
- 4.3. The Chow correspondence homomorphism and Lawson homology
- Chapter 5. Multiplication of algebraic cycles5.1. The multiplicative structure on Chow varieties
- 5.2. Bilinear pairings on group completions
- 5.3. The multiplicative structure on Lawson homology
- 5.4. The ring structure on Lawson homology of P[sup(0)]
- Chapter 6. Operations in Lawson homology
- 6.1. The structure of the algebra A
- 6.2. A geometric description of s
- 6.3. A homological description of iterates of s
- 6.4. The connection between s and the correspondence homomorphism
- ""6.5. The operator Ï?[sub(j)]and the Chow correspondence homomorphism""""6.6. The operator h""; ""Chapter 7. Filtrations""; ""7.1. The Hodge Filtration""; ""7.2. The Geometric filtration""; ""7.3. The Topological filtration""; ""7.4. The Correspondence subspace""; ""7.5. Equality of correspondence and topological filtrations""; ""Appendix A. Mixed Hodge Structures, Homology, and Cycle classes""; ""A.1. Mixed Hodge Structure on homology and cohomology""; ""A.2. Homology and cohomology of smooth varieties""; ""A.3. Cycle classes in homology""
- A.4. Change of cycle class under l.c.i. morphismsA.5. Relation to birational change of correspondence
- A.6. Correspondences and suspensions
- Appendix B. Trace maps and the Dold-Thom Theorem
- B.1. The inverse image mapping on homology attached to a weighted map
- B.2. The Dold-Thom theorem
- Appendix Q. On the group completion of a simplicial monoid
- Q.1. Rings of fractions
- Q.2. Grading of RS-[sup(1)]
- Q.3. The Eilenberg-Moore spectral sequence
- Q.4. A comparison lemma
- Q.5. Good simplicial monoids
- Q.6. Homology of the group completion