On K*(Z/n) and K*(Fq[t]/(t²) /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1985.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 57, no. 329. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""ÂIII.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] â?? SL[sub(n)]Z/p), k > 3""""1st Appendix to ÂIII.1 (case p = 2)""; ""2nd Appendix to ÂIII.1 (commutator relations, and the SL[sub(n)]Z/p â€? action""; ""ÂIV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] â?? SL[sub(n)] Z/p)""; ""ÂIV.2: SL[sub(n)]Z/p â€? invariants in H4[sup(4)](-; Z) of this kernel""; ""Appendix to ÂIV. 1""; ""Appendix to ÂIV. 2""; ""ÂV.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime""; ""ÂV.2: K[sub(3)](Z/2[sup(k)])""; ""ÂVI.1: Maps induced by reduction SLZ â?? SLZ/p[sup(k)]""
- ""Notation""""Bibliography""; ""On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime""; ""Â1: Introduction""; ""Â2: Proofs of ÂÂ1.1/1.2""; ""Â3: Group cohomology calculations""; ""Bibliography""; ""On K[sub(3)]of dual numbers""; ""Introduction â€? statement of results""; ""Â1: Computations of some k*â€?invariants""; ""Â2: Computation of H[sup(i)](T[sub(n)]k; H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2""; ""Â3: R[sub(n)] â€? invariants in H[sup(2)](M[sub(n)]k)""; ""Â4: Estimates of H[sup(1)](T[sub(n)]k; H[sup(2)](M[sub(n)]k))""