On axiomatic approaches to vertex operator algebras and modules /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1993.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 104, no. 494. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Historical note
- 1. Introduction
- 2. Vertex operator algebras
- 2.1. Formal calculus
- 2.2. Definition of vertex operator algebras
- 2.3. Consequences of the definition
- 2.4. Elementary categorical notions
- 2.5. Tensor products
- 2.6. The Virasoro algebra and primary fields
- 2.7. S[sub(3)]-symmetry of the Jacobi identity
- 2.8. Quasi-vertex operator algebras
- 3. Duality for vertex operator algebras
- 3.1. Expansions of rational functions
- 3.2. Rationality of products and commutativity
- 3.3. Rationality of iterates and associativity3.4. The Jacobi identity from commutativity and associativity
- 3.5. Several variables
- 3.6. The Jacobi identity from commutativity
- 3.7. Proof of the tensor product construction
- 4. Modules
- 4.1. Definition
- 4.2. Consequences of the definition
- 4.3. Elementary categorical notions
- 4.4. Primary fields
- 4.5. Rationality, commutativity, associativity and the Jacobi identity
- 4.6. Tensor product modules for tensor product algebras
- 4.7. Irreducibility and tensor products
- 5. Duality for modules
- 5.1. Duality for one module element and two algebra elements5.2. Adjoint vertex operators and the contragredient module
- 5.3. Properties of contragredient modules
- 5.4. Intertwining operators
- 5.5. Adjoint intertwining operators
- 5.6. Duality for two module elements and one algebra element
- References