Cargando…

On axiomatic approaches to vertex operator algebras and modules /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Frenkel, Igor (Autor), Lepowsky, J. (James) (Autor)
Otros Autores: Huang, Yi-Zhi, 1959-eauthor
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 1993.
Colección:Memoirs of the American Mathematical Society ; Volume 104, no. 494.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Historical note
  • 1. Introduction
  • 2. Vertex operator algebras
  • 2.1. Formal calculus
  • 2.2. Definition of vertex operator algebras
  • 2.3. Consequences of the definition
  • 2.4. Elementary categorical notions
  • 2.5. Tensor products
  • 2.6. The Virasoro algebra and primary fields
  • 2.7. S[sub(3)]-symmetry of the Jacobi identity
  • 2.8. Quasi-vertex operator algebras
  • 3. Duality for vertex operator algebras
  • 3.1. Expansions of rational functions
  • 3.2. Rationality of products and commutativity
  • 3.3. Rationality of iterates and associativity3.4. The Jacobi identity from commutativity and associativity
  • 3.5. Several variables
  • 3.6. The Jacobi identity from commutativity
  • 3.7. Proof of the tensor product construction
  • 4. Modules
  • 4.1. Definition
  • 4.2. Consequences of the definition
  • 4.3. Elementary categorical notions
  • 4.4. Primary fields
  • 4.5. Rationality, commutativity, associativity and the Jacobi identity
  • 4.6. Tensor product modules for tensor product algebras
  • 4.7. Irreducibility and tensor products
  • 5. Duality for modules
  • 5.1. Duality for one module element and two algebra elements5.2. Adjoint vertex operators and the contragredient module
  • 5.3. Properties of contragredient modules
  • 5.4. Intertwining operators
  • 5.5. Adjoint intertwining operators
  • 5.6. Duality for two module elements and one algebra element
  • References